期刊文献+

基于FFT盲辨识的肌电信号建模及模式识别 被引量:8

Modeling and Classifying of sEMG Based on FFT Blind Identification
下载PDF
导出
摘要 针对表面肌电信号(Electromyographic signal,sEMG)产生原理复杂、易受人体自身及外界因素影响的特点,采用基于快速傅里叶变换(Fast Fourier transform,FFT)的盲辨识方法建立肌电信号模型.该方法通过计算即可确定信道阶次,无需人为凭借经验设定,且计算简单、易于实现、运算速度快.其利用输出信道间的相互关系特性,实现信号的频域盲辨识,建立数学模型.此方法适用于小样本信号建模,非常适合易受肌肉疲劳影响的表面肌电信号.将模型系数作为改进的BP神经网络的输入,实现多运动模式识别,与其他盲辨识方法比较,此方法识别效果较好. In this paper, the FFT-based blind identification method is used to establish surface electromyographic signal (sEMC) in order to overcome the disadvantage of sEMG, which is susceptible to muscle fatigue and external factors. With no assumption on the precise knowledge of channel order, the FFT (fast Fourier transform)-based method is able to estimate the channel parameters as well as determine channel order. It extends the cross-relation principle to the frequency domain via the discrete Fourier transform, and performs better in small sample signal modeling, which is suitable for sEMG. The parameters of sEMG model are used as the input of the improved BP neural network to classify different movement patterns and a better recognition result is achieved compared with other blind identification methods.
出处 《自动化学报》 EI CSCD 北大核心 2012年第1期128-134,共7页 Acta Automatica Sinica
基金 吉林省科技发展计划项目(20090350) 吉林大学"985工程"工程仿生科技创新平台项目 吉林大学博士研究生交叉学科科研资助计划项目(2011J009)资助 高等院校博士专项科研基金(20100061110029) Supported by the Key Project of Science and Technology Development Plan for Jilin Province(20090350) the Jilin University "985 Project" Engineering Bionic Science and Technology Innovation Platform Doctoral Interdisciplinary Scientific Research Projects Fund of Jilin University(2011J009) Chinese College Doctor Special Scientific Research Fund(20100061110029)
关键词 肌电信号 盲辨识 快速傅里叶变换 奇异值分解 Electromyographic signal (sEMG), blind identification, fast Fourier transform (FFT), singular value decomposition
  • 相关文献

参考文献4

二级参考文献47

共引文献44

同被引文献134

  • 1刘利,刘萍萍,韦佳.用于带边信息人脸数据的半监督维数约减算法[J].吉林大学学报(工学版),2011,41(S1):189-193. 被引量:1
  • 2Da-peng Yang~1 Jing-dong Zhao~1 Yi-kun Gu~1 Xin-qing Wang~1 Nan Li~1 Li Jiang~1Hong Liu~(1,2) Hai Huang~3 Da-wei Zhao~41.State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150001,P.R.China2.Institute of Robotics and Mechatronics,German Aerospace Center,Munich 82230,Germany3.College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,P.R.China4.College of Automation,Harbin Engineering University,Harbin 150001,P.R.China.An Anthropomorphic Robot Hand Developed Based on Underactuated Mechanism and Controlled by EMG Signals[J].Journal of Bionic Engineering,2009,6(3):255-263. 被引量:17
  • 3朱锋峰,任震,黄雯莹.基于小波变换修正幅值的电力系统频率偏移诊断方法[J].电网技术,2004,28(11):34-37. 被引量:10
  • 4Bennett K P, Demiriz A. Semi-supervised support vector machine[C]//NIPS, Denver, USA: IEEE, 1999:368-374.
  • 5Chapelle O, Zien A. Semi-supervised classification by low fensity deperation[C]//10th Int Workshop on AI and Stat, USA: IEEE, 2005:57-64.
  • 6Blum A, Chawla S. Learning from labeled and unla- beled data using graph mineuts [C]//ICML CA, USA: IEEE, 2001:19-26.
  • 7Zhu X, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and Harmonic func- tions[C]//ICML, Washington D C, USA: IEEE, 2003: 58-65,.
  • 8Zhou D, Bousquet O, Lal T, et al. Scholkopf B learning with local and global vonsistency[C] // COLT Cambridge, MA: MIT Press, 2004: 321- 328.
  • 9Belkin M, Matveeva I, Niyogi P. Regularization and semisupervised learning on large graphs [C] /// COLT,2004 : 624-638.
  • 10Bennett K P, Demiriz A, Maclin R. Exploiting un- labeled rata in ensemble methods [C]//KDD, Edm- onton, Canada. 2002:289-296.

引证文献8

二级引证文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部