摘要
以油液光谱分析数据为基础,建立了基于超球面支持向量机的综合传动状态判别模型。利用主成分分析法,对油液光谱分析数据进行预处理,并进行主成分提取的研究分析。研究了参数的变化和异常样本对模型性能的影响。实验研究表明,基于超球面支持向量机的状态判别模型准确可行,能实现综合传动的状态判别。
An evaluation model based on the hypersphere support vector machine for power-shift steering transmission(PSST) was developed on the basis of spectrometric oil analysis data.The pretreatment of spectrometric oil analysis data was made and the principal components were studied using principal component analysis method.The influences of parameter variation and abnormal samples on the performance of hypersphere support vector machine model were studied.It has been proved that this model is accurate in evaluating the operation state of PSST.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2012年第1期13-18,共6页
Journal of Jilin University:Engineering and Technology Edition
基金
'十一五'国防预先研究项目(62301030303)
'十一五'总装备部预研项目(40402020102)
高等学校学科创新引智计划项目(B08043)
关键词
车辆工程
状态判别
超球面支持向量机
综合传动
油液光谱分析
vehicle engineering
state identification
hypersphere support vector machine
power-shift steering transmission(PSST)
spectrometric analysis of oil