期刊文献+

一种基于JADE与小波去噪的自适应盲分离方法 被引量:1

Adaptive Blind Signal Separation Algorithm Based on JADE and Wavelet De-Noising
下载PDF
导出
摘要 针对传统盲分离算法忽略噪声影响的问题,引入小波去噪,在JADE算法的基础上,研究了前、后去噪盲分离算法与JADE算法在不同输入信噪比条件下的分离性能。仿真表明,输入信噪小于约-5dB时,后去噪盲分离算法输出信噪比最佳;大于约25dB时J,ADE输出信噪比最佳;其它情况下,前去噪分离算法性能最佳。在此研究基础上,给出一种可估计信噪比的带噪信号自适应盲分离方法,实现对信号信噪比动态变化情形下目标信号的有效分离。 To solve the problem that noise is ignored in the classical blind signal separation algorithm, this paper introduces wavelet de-noising and studies the de-noising performance of preceding/ posterior blind signal separation algorithms and JADE algorithm under different input-SNR condi- tions. Simulation shows that the blind signal separation algorithm with posterior de-noising is the best when the input-SNR is less than about -5 dB, the JADE algorithm is the best when the input-SNR is greater than about 25 dB and the blind signal separation algorithm with preceding de-noising is the best under other conditions. Based on those results, an adaptive blind signal seperation algorithm with SNR estimation is proposed to seperate the target signal effectively under different input-SNR conditions.
出处 《信息工程大学学报》 2012年第1期37-41,65,共6页 Journal of Information Engineering University
基金 国家科技重大专项资助项目(2011ZX03003-003-02 2009ZX03003-008-02) 国家863计划资助项目(2009AA011504)
关键词 小波去噪 带噪信号 平均输出信噪比 自适应 wavelet de-noising signal with noise average output SNR adaptive
  • 相关文献

参考文献10

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2胡婧,张更新,熊纲要.盲信号分离技术综述[J].数字通信世界,2010(4):64-68. 被引量:2
  • 3Hyvarinen A, Oja E A. Independent component analysis: algorithm and applications [ J ]. Neural Networks,2000,13 (4) :411- 430.
  • 4Hyvarinen A, Oja E A. Fast Fixed-Point Algorithm for Independent Component Analysis [ J ]. Neural computation, 1997,9 (7) : 1483-1492.
  • 5付卫红,杨小牛,刘乃安,曾兴雯.基于独立分量分析(ICA)的通信信号盲侦察技术[J].四川大学学报(自然科学版),2007,44(6):1245-1249. 被引量:6
  • 6黄振川,杨小牛,张旭东.基于独立分量分析的通信侦察复信号盲分离[J].清华大学学报(自然科学版),2010,50(1):86-91. 被引量:7
  • 7Cardoso J F, Souloumiac A. Blind Beam Forming for Non-Gaussian Signals [ J ]. IEE Proceedings-F, 1993,140 (6) :362-370.
  • 8Belouchrani A, Karim A M, Cardoso J F,et al. A Blind Source Separation Technique Using Second-order Statistics[ J]. IEEE Trans. on Signal Processing, 1997, 45 (2) :434-444.
  • 9呈娇.基于小波变换和独立分量分析的去噪方法研究[D].上海:复旦大学,2010:16-26.
  • 10Donoho D L. De-noising by soft-thresholding[ J]. IEEE Trans Inform Theory, 1995,41 (3) :613-627.

二级参考文献70

  • 1许士敏,陈鹏举.频谱混叠通信信号分离方法[J].航天电子对抗,2004,33(5):53-55. 被引量:10
  • 2许士敏.宽开通信侦察中多信号盲分离应用研究[J].电子对抗技术,2005,20(4):12-14. 被引量:4
  • 3杨小牛,付卫红.盲源分离——理论、应用与展望[J].通信对抗,2006,25(3):3-10. 被引量:7
  • 4付卫红,杨小牛,刘乃安,曾兴雯.基于概率密度估计盲分离的通信信号盲侦察技术[J].华中科技大学学报(自然科学版),2006,34(10):24-27. 被引量:14
  • 5Roberts S, Everson R. Independent component analysis: principles and practice [M]. Cambridge University Press, 2001: 19-25.
  • 6Hyvarinen A. Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters, 1999, 6(6): 145- 147.
  • 7Hyvarinen A. Fast ICA for noisy data using Gaussian moments [C]// Proe Int Symp Circuits Systems, Orlando, FL: IEEE, 1999: 179-183.
  • 8Comon P. Independent component analysis, a new concept [J]. Signal Processing, 1994, 36(3) : 287 - 314.
  • 9Cardoso J F. An efficient technique for the blind separation of complex sources [C]//Proc HOS'93. South Lake Tahoe: IEEE, 1993: 275-279.
  • 10Bingham E, Hyvarinen A. A fast fixed point algorithm for independent component analysis of complex valued signals [J]. Neural Systems, 2000, 10(1): 1-8.

共引文献216

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部