期刊文献+

小波阈值去噪法的深入研究 被引量:100

Deep study on wavelet threshold method for image noise removing
下载PDF
导出
摘要 针对以往小波阈值图像去噪法在去除图像噪声的过程中会出现的去噪不彻底、噪声残留、和噪声误判的问题,对小波阈值去噪方法中两个重要因素阈值选取方式和阈值函数进行改进,以达到更好去除噪声的目的。在以往的统一阈值基础上加以修改,使阈值能随着分解尺度的变化而改变,减少小波系数和原系数之间的偏差;对传统的软阈值和硬阈值的优点予以保留,改进它们各自的缺点,产生一种新的阈值函数,使它在处理小波系数时更加灵活。通过Matlab的仿真实验和对算法的精度分析表明,用改进后的小波阈值去噪法处理加高斯噪声的lean图像可以很好的去除图像噪声,使图像的信息熵,对比度和信噪比均得到很大的提高,图像质量和视觉效果也得到提升。 In view of the drawbacks of traditional wavelet threshold method for image noise reduction that it cannot remove the noise thoroughly,and may remove the useful information,this article improves the threshold selection and threshold function which are the vital factors of this method.This article will improve the unified threshold to make the threshold vary with the changes of the decomposition scale.At the same time the deviation of wavelet coefficient and original coefficient will decrease,therefore,the method will retain the advantages of the traditional soft threshold and hard threshold.The proposed method with new threshold selection and threshold function will make it more flexible to deal with the wavelet coefficient in the process of image noise reduction with the help of wavelet decomposing.Experiment results with Matlab reveal that this technology can largely reduce the noise of the Camera image added with Gaussian noise,and the image contrast,S(entropy) and SNR(signal to noise ratio) also get improved.The effectiveness and precision of the new wavelet threshold method for image noise reduction presented in this article are finely proved by the results of the experiments.
出处 《激光与红外》 CAS CSCD 北大核心 2012年第1期105-110,共6页 Laser & Infrared
基金 国家自然科学基金(No.60902067)资助
关键词 图像增强 图像去噪 小波变换 阈值处理 image enhancement image noise reduction wavelet transformation threshold execute
  • 相关文献

参考文献5

二级参考文献23

  • 1傅强,夏克青.基于子波分析方法的信号特征的研究[J].解放军理工大学学报(自然科学版),2000,1(5):23-28. 被引量:1
  • 2Xiong H L, et al. A translation-and scale-invariant adaptive wavelet transform [ J ].IEEE Trans. Image Processing, 2000,9 ( 12 ) :2100 - 2108.
  • 3Shift-invariant adaptive trigonometric decomposition [ C ]//Proc. 4^th Eur. Conf. Speech, Communication, Technology, Madrid, Spain, Sept. 18 - 21,1995 : 247 - 250.
  • 4Cohen I, Raz S, Malah D. Orthonormal shift-invariant adaptive loca/ trigonometric decomposition [ J ]. Signal Process, 1997,57 ( 1 ) :245 - 267.
  • 5Krongold, Ramchandran. Frequency-shift-invariat orthonormal wavelet packet representations [ J ]. Signal Process, 1997,57 ( 3 ) :2579 - 2582.
  • 6李建平.小波分析与信号处理-理论、应用及软件实现[M].重庆:重庆出版社,1999..
  • 7Donoho D L.Denoising by soft-threholding[J].IEEE Trans.Inf.Theory,1995,41:613-627.
  • 8Erie Jones,Paul Runkle,Nilanjan Dasgupta,et al.Genetic Algorithrm Wavelet Design for Signal Classification[J].PatternAnalysis and Machine Intelligence,2001,23(8):890-895.
  • 9L J Porcello,et al.Speckle reduction synthetic aperture radar[J].J.OPT.SOC,1976,66(11):1305-1310.
  • 10蒋立辉,王春晖,王骐.Speckle Noise Suppressing Based on A Generalized Parallel Weighted Average Multidirectional Morphological Filtering Algorithm[J].Chinese Journal of Laser B,2000,9(2).

共引文献23

同被引文献824

引证文献100

二级引证文献519

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部