期刊文献+

周期受击简谐振子系统的经典与量子动力学 被引量:4

Classical and Quantum Dynamics of a Periodically Kicked Harmonic Oscillator
下载PDF
导出
摘要 研究一个周期受击简谐振子系统的经典与量子动力学.研究发现,随着打击强度κ的增加,经典相空间发生分形时,一步时间演化算符的本征值分布也从单位圆的圆周上朝着圆心扩散.而当本征值归一化后,归一化后的本征值分布又回到单位圆周上. This paper studies the classical and quantum dynamics of a periodically kicked Harmonic oscillator system.It is found that as we increase the kicking strength κ,and fractal takes place in classical phase space,the eigenvalue distribution of the one step time evolution operator will diffuse toward the center of the unit circle,from on the unit circle.When the eigenvalues are normalized,the normalized eigenvalue distribution will back to on the unit circle.
作者 杨双波 韦栋
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期49-54,82,共7页 Journal of Nanjing Normal University(Natural Science Edition)
关键词 分形 随机网 量子动力学 Floquet算符 本征值 准能量 fractal stochastic web quantum dynamics Floquet operator eigenvalue quasienergy
  • 相关文献

参考文献10

  • 1Heller E J, O' Connor P W, Gehlen J. The eigenfunctions of classical chaostic systems[ J]. Physica Scripta, 1989, 40:354- 359.
  • 2汪昭,杨双波.势阱中的混沌及其量子对应[J].南京师大学报(自然科学版),2009,32(3):31-36. 被引量:3
  • 3Wintgen D, Marxer H, Briggs J S. Properties of off-shell coulomb radial wave functions [ J ]. J Phys A, 1987,20 :L965-L968.
  • 4Casati D, Chirikov B V, Ford J, et al. Stochastic behavior of a quantum pendulum under periodic perturbation[ M ]. Lect Notes Phys, 1979 93:334-352.
  • 5Komogrove A N. On conservation of conditionally periodic motion for small change in Hamilton function [ J]. Dokl Akad Nauk SSSR,1954, 98 : 527-530.
  • 6Arnold V I. Proof of a theorem of A. N. Komogrove of quasi-periodic motion[J]. Usp Mat Nauk SSSR,1963,18:13-40.
  • 7Moser J. On invariant curves of area-preserving mappings of an annulus [ J ]. Nachr Akad Wiss Gottingen Math--Phys, 1962, K1:1-20.
  • 8Zaslavsky G M, Zakharov My, Sagdeev R Z, et al. Stochastic web and diffusion of particles in a magnetic field [ J ]. Sov Phys JEPT, 1986,64:294-303.
  • 9Hu Bambi, Li Baowen, Liu Jie, et al. Quantum chaos of a kicked particle in an infinite potential well [J]. Phys Rev Lett, 1999,82:4 224-4 227.
  • 10Dana Itzhack, Amit Mary. General approach to diffusion of periodically kicked charges in a magnetic field [ J ]. Phys Rev E,1995,51 :R2 731-R2 734.

二级参考文献5

  • 1Gutzwiller M C. Chaos in Classical and Quantum Mechanics [ M]. New York: Springer-Verlag,1990: 282-300.
  • 2Yang S B, Kellman M E. Semiclassical wave function in the chaotic region from a quantizing cantorus [ J ]. Chemical Physics, 2006, 322 ( 1 ) : 3040.
  • 3Henon M, Heiles C. The applicability of the third integral of motion: some numerical experiments[J]. Astron J, 1964, 69 ( 1 ) : 73-79.
  • 4Waterland R L, Yuan J M, Martens C C, et al. Classical-quantum correspondence in the presence of global chaos[J]. Phys Rev Lett, 1988, 61 (24) : 2 733-2 736.
  • 5Fromhold T M, Wilkinson P B, Sheard F W, et al. Manifestations of classical chaos in the energy level spectrum of a quantum well[J]. Phys Rev Lett, 1995, 75(6) : 1 142-1 145.

共引文献2

同被引文献44

  • 1Casati G, Chirikov B V,Ford J, et al. Stochastic behavior of a quantum pendulum under periodic perturbation[ J]. LectNotes Phys,1979,93: 334-352.
  • 2Wintgen D, Marxer H. Level statistics of a quantized canton system[ J]. Phys Rev Lett, 1988, 60: 971-974.
  • 3Kilbane D, Cummings A, O’ Sullivan G, et al. Quantum statistics of a kicked particle in an infinite potential well[ J]. Cha-os, Solitons and Fractals, 2006,30: 412-423.
  • 4Heller E J, 0 * Connor P W, Gehlen J. The eigenfunctions of classical chaostic systems[ J]. Physica Scripta,1989, 40: 354-359.
  • 5Izrailev F M. Simple models of quantum chaos: spectrum and eigenfunctions[ J]. Phys Rep, 1990, 196: 299-399.
  • 6Casti G, Chirikov B V,Guameri I. Energy-level statistics of integrable quantum systems [ J]. Phys Rev Lett, 1985 , 54:1350-1 353.
  • 7Honig A, Wintgen D. Spectral properties of strongly perturbed Coulomb systems: fluctuation properties [ J].Phys Rev A,1989, 39: 5 642-5 656.
  • 8Casati D, Chirikov BV, Izrailev FM, et al. Stochastic behavior of a quantum pendulum under a periodic perturbation [ M ]// Casati D, Ford J. Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Leture Notes in Physics. Berlin: Springer-Verlag, 1979,93 : 334-352.
  • 9Nakamura K, Okazaki Y, Bishop A R. Periodically pulsed spin dynamics : scaling behavior of semiclassical wave functions [ J ]. Physical Review Letters, 1986,57 ( 1 ) :5-8.
  • 10Haak F. Quantum Signatures of Chaos [ M ]. Berlin, Heidelberg: Springer, 1991 : 52,169.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部