期刊文献+

改进的数据流缺失数据处理算法 被引量:4

Improved Missing Stream Data Interpolation Algorithm
下载PDF
导出
摘要 数据流预处理主要是在原始观测数据的基础上进行,包括对原始监测到的数据集中的缺失数据进行插补或剔除,是数据流预测过程中一个重要性环节,是数据流应用中必不可少的组成部分.数据流预处理技术可以改进监测数据流的质量,从而有助于提高其后的处理过程的精度和性能. The preprocessing of data stream is mainly carried out on the raw data,including interpolating the missing data and excluding the useless data on the monitoring original data set.It is an important and essential part on the data stream preprocessing.Data stream preprocessing can improve the quality of monitoring data stream,and can improve the accuracy and performance of the subsequent processing.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第3期55-59,共5页 Microelectronics & Computer
关键词 数据流 检测 缺失数据 data stream monitoring missing data
  • 相关文献

参考文献5

  • 1Jeffrey S R,Alonso G,Franklin MJ,et al.A pipe-lined framework for on line cleaning of sensor datastreams[C]∥Int’l Conf.on Data Engineering.Atlan-ta,2006:140-142.
  • 2Jeffery S R,Garofalakis M,Franklin M J.Adaptivecleaning for RFID data streams[C]∥VLDB 2006.Korea,2006:163-174.
  • 3Zhuang Y Z,Chen L.In-Network outlier cleaning fordata collection in sensor networks[C]∥VLDB 2006.Korea,2006:41-48.
  • 4张春生,赵凌琪,庄丽艳.部分缺失数据的三次参数样条函数修补方法[J].微电子学与计算机,2010,27(5):196-198. 被引量:1
  • 5Gonzalez H,Han JW,Li XL.Mining compressedcommodity workflows from massive RFID data sets[C]∥JIKM 2006.USA:Arlington,162-171.

二级参考文献8

  • 1刘峰,瞿俊.基于聚类分析和神经网络的时间序列预测方法[J].微电子学与计算机,2006,23(9):85-87. 被引量:16
  • 2Grawa A I,R annila M H, Srikant R, et al. Fast discovery of association rules[ C]//A dvance in Know ledge Discovery and Data Mining. Menlo Park, CA: AAA I Press, 1995: 307 - 328.
  • 3Ragel A, Crem iUeux B. Treatment of missing values for association [ C] // Research and Development in Know ledge Discovery and DataM ining. New York: Springer - Verlag, 1998:258- 269.
  • 4Kononenko I, Bratko I. Experiment in automatic learning of medical diagnostic rules [ R ]. Jozef Stefan Institute, 1984.
  • 5Quinlan J R. CA. 5: Programs for machine learning[ M]. SanMateo, CA: Morgan Kaufmann Publishers, Inc., 1993.
  • 6Lakshm inarayan K, Harp S, Goldman R, et al. Imputation of missing data using machine learning techniques [ C] // Proceedings of the 2nd International Conference on Know ledge Discovery and DataM ining. Menlo Park, CA: AAA I Press, 1996:140-145.
  • 7王清毅,蔡智,邹翔,蔡庆生.部分数据缺失环境下的知识发现方法[J].软件学报,2001,12(10):1516-1524. 被引量:18
  • 8张彩明.高精度三次参数样条曲线的构造[J].计算机学报,2002,25(3):262-268. 被引量:20

同被引文献31

  • 1田兵.缺失数据的单一插补方法[J].阴山学刊(自然科学版),2011,25(3):17-19. 被引量:3
  • 2陈希,董静,隆克平.基于TCP被动测量的单播网络丢包层析[J].重庆邮电大学学报(自然科学版),2007,19(2):221-224. 被引量:3
  • 3OSTU N. A Threshold Selection Method from Gray Level Histogram[J]. IEEE Trans, 1979, SMC9 (1) : 62.
  • 4I.IU Zheng-guang, LIN Xue-yan, CHE Xiu-ge. Fuzzy Entropy Segmentation Method Based on 2D Gray Histogram[J]. Journal of Tianjin University, 2004,37 (12).-1101.
  • 5MA 13o, CHI Zhe-ru. Texture Image Segmentation Based on Entropy Theory[C]//Control, Automation, Roboties and Vision Conference. Kunming: ICARCV, 2004 : 103.
  • 6RAFAEL C G, RICHARD E W. Digital Image Processing [M]. 2nd. San Antonio: Pearson Education Inc, 2002.
  • 7ABIDI M A, C, ONZAI.EZ R C. Data Fusion in Robotics and Machine Intelligence[M]. New York: Academic Press, 1992.
  • 8陈盼盼.缺失数据下半参数变系数部分线性模型的统计推断[D].北京:北京工业大学,2012.
  • 9曾洁关.数据缺失处理在"绿色矿山"中的应用[D].马鞍山:安徽工业大学.2012.
  • 10李娜,黄孝彬,田志强,隋丽颖.生产过程数据稳定性判断的一种方法[J].华电技术,2010,32(1):32-34. 被引量:13

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部