摘要
在非线性模型预测中,往往难以获得精确的非线性数学模型,从而对预测精度造成一定的影响。该文将粒子群算法与BP算法相结合,提出了一种PSO-BP算法,改进了BP算法的不足,并将其应用于神经网络模型预测当中,提高了非线性模型预测的精度。
In nonlinear model in the prediction,often difficult to obtain precise nonlinear mathematical model,and the prediction accuracy cause certain effect.This paper will particle swarm algorithm and the BP algorithm is proposed,which combines a PSO-BP algorithm,improved BP algorithm is insufficient,and applied to the neural network model of forecasting,improve the prediction precision of the nonlinear model.
出处
《电子质量》
2012年第3期7-8,14,共3页
Electronics Quality
关键词
非线性模型预测
粒子群算法
BP算法
nonlinear model prediction
particle swarm algorithm
back-propagation algorithm