期刊文献+

基于SVM的旋转机械故障诊断方法 被引量:8

Rotating Machinery Fault Diagnosis Method Based on SVM
下载PDF
导出
摘要 提取时域与频域共20个特征参数作为数据样本,选择适合旋转机械振动信号的径向基函数及相关参数,基于一对多法构造支持向量机(SVM)多类分类器,实现旋转机械滚动轴承的故障诊断。通过对振动信号特征进行训练与测试,并与BP神经网络进行对比结果表明,该SVM多类分类器可较好地解决小样本问题,在训练时间和识别正确率上均优于BP神经网络。 This paper extracts 20 characteristic parameters of time domain and frequency domain as data sample,chooses Radial Basis function(RBF) and related parameters which are suitable for rotating machinery vibration signal,and constructs a one-against-all Support Vector Machine(SVM) multi-class classifier to identify health status of rolling bearing.Compared with Back-propagation(BP) neural network,the SVM classifier with the vibration features of rolling bearing.Experimental results indicate that the SVM classifier can better solve the problem of small sample,is superior to the BP neural network in the training time and recognition accuracy.
出处 《计算机工程》 CAS CSCD 2012年第5期233-235,共3页 Computer Engineering
基金 国家自然科学基金资助项目(51075379 51005221)
关键词 支持向量机 特征提取 状态识别 故障诊断 旋转机械 Support Vector Machine(SVM) feature extraction status identification fault diagnosis rotating machinery
  • 相关文献

参考文献8

  • 1Rao R,Muhammad A Y.Neural Networks Applied for Fault Diagnosis of AC Motors[C] //Proc.of International Symposium of Information Technology.Kuala Lumpur,Malaysia:IEEE Press,2008.
  • 2Sahin F,Yavuz C.Fault Diagnosis for Airplane Engines Using Bayesian Networks and Distributed Particle Swarm Optimi-zation[J].Parallel Computing,2007,33(2):124-143.
  • 3Vapnik V N.The Nature of Statistical Learning Theory[M].New York,USA:Springer-Verlag,1995.
  • 4Vapnik V N.Statistical Learning Theory[M].[S.l.] :Wiley Press,2004.
  • 5Vapnik V,Golowich S.Support Vector Method for Function Approximation Regression Estimation and Signal Processing[C] //Proc.of Advances in Neural Information Processing Systems.Cambridge,USA:MIT Press,1996:281-287.
  • 6Liu Yiguang,You Zhisheng,Cao Liping,et al.A Novel and Quick SVM-based Multi-class Classifier[J].Pattern Recognition,2006,39(11):2258-2264.
  • 7冼广铭,曾碧卿,唐华,肖应旺.小波包结合支持向量机的故障诊断方法[J].计算机工程,2009,35(4):212-214. 被引量:11
  • 8Hu Qiao,He Zhengjia.Fault Diagnosis of Rotating Machinery Based on Improved Wavelet Package Transform and SVMs Ensemble[J].Mechanical Systems and Signal Processing,2007,21(2):688-705.

二级参考文献3

共引文献10

同被引文献57

引证文献8

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部