摘要
As an essential component of a servo system,mechanical properties of high precision planetary servo gearhead direct influence on the validation,stability and accuracy of the servo control system.However,mechanical properties measurement and assessment for high precision planetary servo gearhead is a time-consuming and tedious work,since current methodologies typically rely on various different specified systems.An integrated multifunctional measurement system SFJC-I is developed,which employs a torque sensor and a laser displacement transducer to simultaneously measure torque applied on servo gearhead and its corresponding torsional deformation.The measurement system depends on the accurate measurement of the relative displacement between input clamping system and output shaft of servo gearhead with a lever-type enlarging mechanism,rather than traditional optical dividing head and optical multisurface prism.Using interchangeable fixture system,the developed system capability to measure almost all series and specifications of high precision planetary servo gearhead is demonstrated.With proposed hardware platform configuration and developed measuring software,mechanical properties such as backlash,torsional stiffness,hysteresis plot and emergency stop torque,can be measured accurately and assessed reliably.A torsion test with standard circular specimen is carried out with the multifunctional measurement system.The result of test shows that the measurement error is within ±3σ and the measurement reliability is more than 99.97%.The problem of accurate measurement and reliable assessment of mechanical properties for high precision planetary servo gearhead is fully solved with the developed multifunctional measurement system.
As an essential component of a servo system,mechanical properties of high precision planetary servo gearhead direct influence on the validation,stability and accuracy of the servo control system.However,mechanical properties measurement and assessment for high precision planetary servo gearhead is a time-consuming and tedious work,since current methodologies typically rely on various different specified systems.An integrated multifunctional measurement system SFJC-I is developed,which employs a torque sensor and a laser displacement transducer to simultaneously measure torque applied on servo gearhead and its corresponding torsional deformation.The measurement system depends on the accurate measurement of the relative displacement between input clamping system and output shaft of servo gearhead with a lever-type enlarging mechanism,rather than traditional optical dividing head and optical multisurface prism.Using interchangeable fixture system,the developed system capability to measure almost all series and specifications of high precision planetary servo gearhead is demonstrated.With proposed hardware platform configuration and developed measuring software,mechanical properties such as backlash,torsional stiffness,hysteresis plot and emergency stop torque,can be measured accurately and assessed reliably.A torsion test with standard circular specimen is carried out with the multifunctional measurement system.The result of test shows that the measurement error is within ±3σ and the measurement reliability is more than 99.97%.The problem of accurate measurement and reliable assessment of mechanical properties for high precision planetary servo gearhead is fully solved with the developed multifunctional measurement system.
基金
supported by Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX2009J077)
Research Fund for the Doctoral Program of Higher Education of China (Grant No.200806141063)