摘要
以初轧机轧制过程中产生自激振动为例 ,在考虑振动系统具有间隙及振动边界的特殊情况下 ,建立了初轧机自激振动力学模型。对所建模型的分析表明 ,该系统具有多种非线性振动形式 ,即周期振动、概周期振动直至混沌振动。应用 Poincare截面、分叉图和最大 L yapunov指数等多种方法描绘了这些振动的形式。研究结果为分析。
A dynamic model based on the self excited vibration in a discontinuous vibrating system such as rolling mill is presented, in which the vibrating system is piecewise linear and the boundaries of the model are oscillating. The study on the model shows that a wide spectrum of dynamic responses such as periodic, quasi periodic and chaotic vibrations can be easily observed. The nonlinear dynamic techniques such as Poincare sections, bifurcation diagrams and largest Lyapunov exponents are employed to ascertain the different vibrational forms. The conclusions can be used as a key information to analyze, diagnose and control the vibrations in the similar systems.
出处
《振动工程学报》
EI
CSCD
2000年第1期122-127,共6页
Journal of Vibration Engineering
基金
国家自然科学基金重大资助项目 !(编号 :19990 5 10 )
973资助项目! (编号 :G19980 2 0 32 0 )
关键词
非线性振动
自激振动
初轧机
间隙
振动边界
nonlinear vibration
self-excited vibration
rolling mills
clearance
boundary