期刊文献+

压缩变换半群的一些组合性质 被引量:1

On Combinatorial Property of Compressive Transformation Semigroup
下载PDF
导出
摘要 设Tn是有限集Xn={1,2,…,n}上的变换半群。任取α∈Tn,若对任意的x、y∈Xn,有|xα-yα|≤|x-y|,则称α是Tn的压缩元。令CTn={α|α是Tn的压缩元},容易验证CTn是Tn的子半群,称该半群为压缩变换半群。主要研究了CTn的组合性质,证明了|CTn|=n·3n-1-2∑n-1j=1LN1j.3n-1-j;LN1n=3LN1n-1-LNn-1(1,1),n≥3;LN(1,1)n=2LN(1,1)n-1+LN(1,321)n,n≥5。 Let be transformation semigroup on finite set Xn={1,2,…,n}.For all α∈Tn,we shall call α is compressive element of Tn if|xα-yα|≤|x-y| for all x,y in Xn.Let CTn be a set that consists of the compressive element of Tn.Then CTn is a subsemigroup of Tn,we call CTn as compressive semigroup.It is shown that |CTn|=n·3n-1-2∑n-1j=1LN1j·3n-1-j;LN1n=3LN1n-1-LNn-1(1,1),n≥3;LN(1,1)n=2LN(1,1)n-1+LN(1,321)n,n≥5.
出处 《淮阴工学院学报》 CAS 2012年第1期5-7,共3页 Journal of Huaiyin Institute of Technology
关键词 变换半群 压缩 组合性质 ADABOOST算法 transformation semigroup compressive combinatorial property AdaBoost algorithm
  • 相关文献

参考文献2

二级参考文献17

  • 1Howie, J. M. Fundamentals of Semigroup Theory [ M ]. London: Oxford University Press, 1995.
  • 2Pei Huisheng, Regularity and green's relations for semigroups of transformations that preserve an equivalence [ J] communications in Algebra,2005,33 : 109-118.
  • 3Lei Sun, Huisheng Pei, and Zhengxing Cheng. Regularity and Green' s relations for semigroups of transformations preserving orientation and equivalence [ J ]. Semigroup Forum ,2007,74:473-486.
  • 4J. H. van Lint, R. M. Wilson. A Course in Combinatorics (Second Edition) [ M ]. Beijing :China Machine Press 2004.
  • 5Richard A. Brualdi. Introductory Combinatorics (Third Edition)[J].冯舜玺,罗平,裴伟东译.北京:中国机械出版社,2005.
  • 6GARBA G U. On the idernpotent ranks of certain semigroups of order-preserving transformations I J]. Portugal Math, 1994, 51 : 185-204.
  • 7GOMES G M S, HOWIE J M. On the ranks of certain semigroups of order-preserving transformations[J].Semigroup Forum, 1992,45:272-282.
  • 8BARNES G, LEVI I. On idempotent ranks of semigroups of partial transformations[J].Semigroup Forum, 2005,70:81-96.
  • 9CHERUBINI A, HOWIE J M, PIOCHI B. Rank and status in semigroup theory[J].Commun. Algebra, 2004, 32:2783- 2801.
  • 10GOMES G M S, HOWIE J M. On the ranks of certain finite semigroups of transformations [ J ]. Math Proc Camb Phil Soc, 1987,101:395-403.

共引文献36

同被引文献8

  • 1Laradji A, Umar A. Combinatorial results for semigroups of order-preserving partial transforma- tion[J]. Journal of Algebra, 2004, 278(1): 342-359.
  • 2Laradji A, Umar A. Combinatorial results for semigroups of order-preserving full transformation[J]. Semigroup Forum, 2006, 72: 51-62.
  • 3Laradji A, Umar A. Combinatorial result.s for the symmetric inverse semigroup[J]. Semigroup Forum, 2007, 75: 221-236.
  • 4Howie J. Combinational and probabilistic results in transformation semigroups[R].Words, Languages and Combinatorics, II(Kyoto), 1992: 200-206.
  • 5Higgins P. Combinatorial results for semigroups of order-preserving mappings[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1993, 113(2): 281-296.
  • 6Howie J M. Fundamentals of Semigroup Theory[M]. Clarendon Press, Oxford, 1995.
  • 7Canyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups[M]. London:Springer Sci- ence+Business Media, 2009.
  • 8陈先军.保整除变换半群的Green关系及一些组合结果[J].贵州师范大学学报(自然科学版),2010,28(2):93-96. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部