期刊文献+

下一代蜂窝网络中家庭基站导频功率的智能优化 被引量:1

Intelligent optimization techniques for femtocell pilot power in next-generation cellular network
下载PDF
导出
摘要 为了解决下一代蜂窝网络家庭基站导频功率分配问题,给出了一个基于免疫记忆克隆算法的家庭基站导频功率优化方案。设计了家庭基站导频功率优化问题的数学模型,给出了免疫记忆克隆算法框架,并通过仿真实验对本文方案进行了验证。实验结果表明:本文方案基于网络拓扑结构和传播流量分布,能够有效地对家庭基站的导频功率和毫微微小区半径进行优化配置,具有较好的应用价值。 To solve the femtocell pilot power allocation problem in next-generation cellular network,a novel optimization solution for femtocell pilot power based on immune memory clone algorithm is propose.The mathematical model of the femtocell pilot power allocation problem is established.The framework of the immune memory clone algorithm is given.Simulation experiments results show that,based on the network topology and communication flow distribution,the proposed optimization solution can effectively optimize femtocell pilot power allocation and femtocell radius,and it can be applied to solve real engineering problems.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第3期776-781,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61103143 61072139) 河南省重点科技攻关项目(112102210221) 河南省教育厅自然科学研究计划项目(12A520055)
关键词 通信技术 下一代蜂窝网络 家庭基站 导频功率优化 免疫优化算法 communication next-generation cellular network femtocell pilot power optimization immune optimization algorithm
  • 相关文献

参考文献10

二级参考文献48

  • 1朱蔚恒,印鉴,谢益煌.基于数据流的任意形状聚类算法[J].软件学报,2006,17(3):379-387. 被引量:51
  • 2牛琨,张舒博,陈俊亮.采用属性聚类的高维子空间聚类算法[J].北京邮电大学学报,2007,30(3):1-5. 被引量:13
  • 3Habibi N K, Saraee M H. Protein contact map prediction based on an ensemble learning method[C]// Proceedings of 2009 International Conference on Computer Engineering and Technology, Singapore, 2009,.
  • 4Barah Pankaj, Sinha Somdatta. Analysis of protein folds using protein contact networks[J]. Pramana-Journal of Physics, 2008, 71(2) :369-378.
  • 5Melo R C, Ribeiro C, Murray C S, et al. Finding protein-protein interaction patterns by contact map matching [J]. Genetics and Molecular Research, 2007 (4): 946-963.
  • 6Grana O, Baker D, Maccallum R M, et al. CASP6 assessment of contact prediction[J]. Proteins: Structure, Function and Bioinformatics, 2005, 61, (S7): 214-224.
  • 7Fariselli P, Olmea O, Valencia A, et al. Prediction of contact maps with neural networks and correlated mutations[J]. Protein Eng, 2001 (14):835-843.
  • 8Hobohm U, Scharf M, Schneider R, et al. Selection of representative data sets[J]. Prot Sci, 1992 (1): 409-417.
  • 9Chou P Y, Fasman G D. Prediction of the secondary structure of proteins from their amino acid sequence [J]. Advanced Enzyme Molecular Biology, 1978, 47:145-148.
  • 10David Baker, Andrej Sali. Protein structure prediction and structural genomic[J]. Science, 2001, 294 (5540) :93-97.

共引文献25

同被引文献18

  • 1韩湘,魏急波.一种MIMO系统中叠加导频的最优设计方法[J].电子学报,2007,35(4):732-735. 被引量:2
  • 2VALKEALAHTI K,PAKKINEN J, FLANAGAN A. WC- DMA common pilot power control with cost function mini- mization[ C]. in Proceeding of the 56th IEEE Vehicular Technology Conference,2002:2244-2247.
  • 3DUONG D V, QIEN G E. Optimal pilot spacing and power in rate-adaptive MIMO diversity systems with im- perfect CSI[J]. IEEE Transactions on Wireless Commu-nieations, 2007, 6 ( 3 ) : 845- 851.
  • 4GOLOVINS E, VENTURA N. Optimization of the pilot- to-data power ratio in the wireless MIMO-OFDM system with low-complexity MMSE channel estimation[J]. Com- puter Communications, 2009, 32(3):465-476.
  • 5ZHOU X G, LAMAHEWA T A, SADEGHI P. Two-way training: Optimal power allocation for pilot and data transmission[ J]. IEEE Transactions on Wireless Com- munications, 2010, 9 (2) :564-569.
  • 6SIOMINA I, YUAN D. Minimum pilot power for service coverage in WCDMA networks [ J ]. Wireless Networks, 2008, 14(3) :393-402.
  • 7JITVANICHPHAIBOOL K, SAQUIB M. Optimum pilot- to-data power ratio for partial RAKE receiver in Nakaga- mi-m fading channels [ J ]. IEEE Transactions on Wire- less Communications, 2009, 8( 1):136-147.
  • 8ZITZLER E, THIELE L. Multi-Objective evolutionary al- gorithms: A comparative case study and the strength Pa- reto approach. IEEE Trans. on Evolutionary Computa- tion, 1999, 3(4) :257-271.
  • 9GONG M G, JIAO L C, DU H F, BO L F. Multi-objec- tive Immune Algorithm with Nondominated Neighbor-Based Selection. Evolutionary Computation,2008,16 (2) :225-255.
  • 10ZHU S F, LIU F, CHAI Z Y, et al. Immune optimization algorithm for solving joint call admission control problem in next-generation wireless network[J]. Engineering Applica- tions of Artificial Intelligence ,2012,25 (7) : 1395-1402.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部