期刊文献+

有效滤除高强度图像混合噪声的方法 被引量:3

An Effective Method of High-Intensity Mixed Noise Filtering for Images
下载PDF
导出
摘要 传统的交叉视觉皮质模型(ICM)对单一噪声的去除具有良好的性能.为了扩展ICM在图像降噪领域的应用,提高降噪能力,提出一种基于邻域连接的NL-ICM.针对传统ICM存在的局限性,在神经元的构造上引入双边滤波的思想,通过扩展神经元的连接输入、引入连接权重、设计脉冲阈值实时计算函数,并为神经元设计像素更新规则.实验结果表明,该模型能够较好地去除图像中的混合噪声. Intersecting cortical model(ICM) is only capable of filtering images with only one single type of noise.In order to extend the application of ICM in image denoising,ICM neurons' connection is re-designed.In our work,the thought of Bilateral Filtering is introduced together with extending the connecting input of neurons.By considering the linking-weight,designing a real-time pulse threshold function and a pixel renewal rule,a new Neighborhood-Linking ICM is proposed in this paper.Experiments show that the proposed ICM-based filtering method is fast and effective for removing the impulse noises mixed with additional Gaussian noises.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第5期656-661,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国防科技重点实验室基金(9140c610301080c6106)
关键词 混合噪声滤波 交叉视觉皮质模型 双边滤波 归一化均方误差 mixed noise image filtering intersecting cortical model(ICM) bilateral filtering normalized mean square error(NMSE)
  • 相关文献

参考文献15

  • 1Russo F. A method for estimation and filtering of Gaussian noise in images [J].IEEE Transactions on Instrumentation and Measurement, 2003, 52(4) : 1148-1154.
  • 2Alajlan N, Kamel M, Jernigan E. Detail preserving impulsive noise removal [J]. Signal Processing: Image Communication, 2004, 19(10): 993-I003.
  • 3Srinivasan K S, Ebenezer D. A new fast and efficient decision- based algorithm for removal of high-density impulse noises [J]. IEEE Signal Processing Letters , 2007, 14(3): 189-192.
  • 4Wang Z, Zhang D. Progressive switching median filter for the removal of impulse noise from highly corrupted images [J]. IEEE Transactions on Circuits and Systerms Ⅱ: Analog and Digital Signal Processing, 1999, 46(1): 78-80.
  • 5Vijaykumar V R, Vanathi P T, Kanagasabapathy P, et al. High density impulse noise removal using robust estimation based filter [J]. IAENG International Journal of Computer Science, 2008, 35(3): 149-151.
  • 6Eckhorn R, Reitboeek H J, Arndt M, et al. Feature linking via stimulus-evoked oseiilations: experimental results from eat visual cortex and functional implications from a network model [C] //Proceedings of International Joint Conference on Neural Networks. Piscataway: IEEE Computer Society Press, 1989: 723-730.
  • 7Ekblad U, Kinser J M. Theoretical intersecting cortical model and its use for detection of aircrafts, cars and nuclear explosion tests [J]. Signal Processing, 2004, 84(7): 1131-1146.
  • 8Ekblad U, Kinser J M. The intersecting cortical model in image processing [J]. Nuclear Instruments & Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 525(1/2): 392- 396.
  • 9Ma Y D, Fei S, Lian L. Gaussian noise filter based on PCNN [C] //Proceedings of the IEEE International Conference on Neural Networks and Signal Processing. Los Alamitos: IEEE Computer Society Press, 2003, 1: 149-151.
  • 10Zhang J Y, Dong J Y, Shi M H. An adaptive method for image filtering with pulse-coupled neural networks [C]// Proceedings of IEEE International Conference on Image Processing. Los Alamitos:IEEE Computer Society Press, 2005, 2:133-136.

同被引文献41

  • 1张旭明,徐滨士,董世运,甘小明.自适应中值-加权均值混合滤波器[J].光学技术,2004,30(6):652-655. 被引量:26
  • 2Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D, 1992, 60(1): 259- 268.
  • 3Alliney S. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm [J]. IEEE Transactions on Signal Processing, 1997, 45(4): 913-917.
  • 4Nikolova M. Minimizers of cost-functions involving nonsmooth data fidelity terms Application to the processing of outliers [J]. SIAM J Numer Anal, 2002, 40(3): 965-994.
  • 5Song B. Topics in Variational PDE Image Segmentation, Inpainting and Denoising [D]. Los Angeles: University of California Los Angeles, 2003.
  • 6Osher S, Burger M, Goldfarb D, et al.. An iterative regularization method for total variation based image restoration [J]. Multiscale Modeling and Simulation, 2005, 4(2): 460-489.
  • 7Marzek P, Weickert J. From two-dimensional nonlinear diffusion to coupled Haar wavelet shrinkage [J]. J Vis Commun Image R, 2007, 18(2): 162-175.
  • 8Yin W, Goldfarb D, Osher S. The total variation regularized L1 model for multiscale decomposition [J]. Multiscale Modeling and Simulation, 2007, 6(1): 190-211.
  • 9Acar R, Vogel C R. Analysis of bounded variation penalty methods for ill-posed problems [J]. Inverse Problems, 1994, 10(6): 1217-1229.
  • 10林其忠,余建国,王威琪.超声图像斑点噪声限制的非线性各向异性扩散[J].复旦学报(自然科学版),2008,47(1):70-74. 被引量:2

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部