期刊文献+

内燃机-有机朗肯循环联合循环动力系统技术经济性能分析 被引量:5

Technological and Economic Performance Analysis for ICE-ORC Compounded Power System
下载PDF
导出
摘要 提出一套内燃机-有机朗肯循环系统方案,该方案的有机朗肯循环(ORC)子系统蒸发器布置在内燃机(ICE)排烟系统采集热量,其输出动力通过齿轮传动机构与ICE同轴输出.该系统可利用原有动力传输子系统启动ORC子系统,ORC子系统稳定运行后又可向其输出动力.以CAT3516CDITA ICE为例,进行ICE-ORC系统技术经济性能分析,结果表明,标定负荷条件下,该系统总热效率较现有ICE系统可提高7.8%,而ORC子系统的投资回收期仅为9.3,kh.分析表明,ORC子系统蒸发器平均温差降低或者燃料价格提高,均有利于改善ORC子系统技术经济性能;当ICE负荷高于90%或ORC子系统透平等熵效率高于65%,该系统具有技术经济性能优势. An engine-organic Rankine cycle (ORC) compounded power scheme was proposed in this study. Evaporator of the ORC sub-system was arranged on the internal combustion engine (ICE) exhaust gas system. Power output of the ORC sub-system was transferred to engine main shaft through gear wheel drive construction. Main shaft of engine can be used to start the ORC sub-system, and vice versa, the ORC sub-system can transfer power to main shaft after started. Based on CAT3516CDITA engine, technological and economic performance of engine-ORC compounded power system was analyzed. Re- sults showed that the overall thermal efficiency could be increased by 7.8%, and payback period of the ORC sub-system is only 9.3 kh. The key parameters analysis showed that, under the condition of gas nocondensing at the evaporator outlet, the ORC sub-system technological and economic performance advantage became obviously with evaporator LMTD decreasing and/or fuel price rising. The configuration sizes of evaporator and condenser are confined by the limited space room and weight demand in operation. When load percent is over 90%, or organic turbine isentropic efficiency is over 0.65, the ORC compounded power scheme has technological and economic advantages.
出处 《内燃机学报》 EI CAS CSCD 北大核心 2012年第3期266-271,共6页 Transactions of Csice
基金 江苏省优势学科资助项目(PAPD)
关键词 内燃机 有机朗肯循环 联合循环动力系统 internal combustion engine organic Rankine cycle combined cycle power system
  • 相关文献

参考文献12

  • 1Radcliff T D, Biederman B P, Mccord K R, et al. Organic rankine cycle mechanically and thermally cou- pled to an engine driving a common load[P]. US20090211253A1, 2009-08-27.
  • 2Hartmut S, Andreas S. The organic rankine cycle- power production from low temperature heat [R]. Elec- tricity Generation, Combined Heat and Power, Stras- bourg, 2006.
  • 3Schuster A, Karellas S, Kakaras H, et al. Energetic and economic investigation of organic rankine cycle ap- plications[J]. Applied Thermal Engineering, 2009, 29(8/9) : 1809-1817.
  • 4Chen H J, Goswami D Y, Stefanakos E K. A review of thermodynamic cycles and working fluids for the conver- sion of low-grade heat EJ]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 3059-3067.
  • 5Endoh T, Komatsu H, Baba T, et al. Waste heat re- covery device for internal combustion engine[P]. US20030106316A1, 2003-06-12.
  • 6Niikura H, Endoh T, Itoh Y, et al. Waster heat recov- ery device of multi-cylinder internal combustion en- gine [P]. US006761030B2, 2004-11-30.
  • 7Jobson E. Thermal energy recovery device [P]. US007152407B2, 2006-12-26.
  • 8Brasz J J, Biederman B P. Organic rankine cycle waste heat applications [P]. US007174716B2, 2007-02-13.
  • 9何茂刚,张新欣,曾科.车用发动机余热回收的新型联合热力循环[J].西安交通大学学报,2009,43(11):1-5. 被引量:21
  • 10方金莉,魏名山,王瑞君,马朝臣.采用中温有机朗肯循环回收重型柴油机排气余热的模拟[J].内燃机学报,2010,28(4):362-367. 被引量:38

二级参考文献35

  • 1王鲁峰,李辉,万小利,丁红军,金志刚.模拟多种发动机尾气热源的吸附制冷试验台研究[J].能源工程,2004,24(3):5-7. 被引量:3
  • 2秦朝葵,杨志.一种使用发动机余热的新型客车采暖系统[J].柴油机,2004,26(5):41-43. 被引量:5
  • 3IYER R C,GOHIL P, NAGARSHETH H J, et al. Development of a vapor compression air conditioning system utilizing the waste heat potential of exhaust gases in automobiles [C/OL]// Proceedings of Future Transportation Technology Conference of Society of Automotive Engineers. [2009-03-021. http:///www. sac. org/servtets/productDetail? PROD_ TYP = PAPER&PROD_ CD= 2005-01-3447.
  • 4曾科,高可,何茂刚,等.车用汽油机能量分布及排气余热的火用分析研究[C]//中国内燃机学会2006年学术年会暨燃烧、测试分会联合学术年会论文集.北京:中国内燃机学会,2006:56.
  • 5TANAKA Y, MACHINDA, WATANABE Y, et al. Exhaust gas heat recovery system in internal combustion engine: US, 4394813[P]. 1981-02-22.
  • 6KOBO I, GHUMAN A S. Rankine diesel integrated system: US, 4901531 [P]. 1988-01-29.
  • 7ENDOH T, KOMATSU H, MINEMI M, et al. Waste heat recovery device for internal combustion engine: US, 6732525 [P]. 2001-01-17.
  • 8NIIKURA H, TANIGUCHI H, UDA M, et al. Rankine cycle device of internal combustion engine: US, 6845618 [P]. 2001-10-05.
  • 9MINEMI M, MIURA H, YOSHIDA K, et al. Rankine cycle device of internal combustion engine: US, 6910333 [P]. 2001-10-05.
  • 10KALINA A I. Combined cycle system with novel bottoming cycle [J]. ASME Joumal of Engineering for Gas Turbines and Power, 1984,106:737-742.

共引文献66

同被引文献60

  • 1BERTRAND F T, LAMBRINOS G, FRANGOUDAKIS A. Low-grade Heat Conversion into Power Using Organic Rankine Cycles-A Review of Various Applications [J]. Renewable and Sustainable Energy Reviews, 2011, 15 (8): 3963-3979.
  • 2SCHUSTER A, KARELLAS S, KAKARAS E, et al. Energetic and Economic Investigation of Organic Rankine Cycle Appli- cations [J]. Applied Thermal Engineering 2009, 29 (8): 1809-1817.
  • 3CAYER E, CALANIS N, NESREDDINE H. Parametric Study and Optimization of a Transcritical Power Cycle Using a Low Temperature Source [J]. Applied Energy, 2010, 87 (4): 1349-1357.
  • 4ZHANG S J, WANG H X, GUO T. Performance Comparison and Parametric Optimization of Subcritical Organic Rankine Cycle (ORC) and Transcritical Power Cycle System for Low- temperature Geothermal Power Generation [J]. Applied En- ergy, 2011, 88 (8): 2740-2754.
  • 5GUO T, WANG H X, ZHANG S J. Fluids and Parameters Optimization for a Novel Cogeneration System Driven by Low-temperatureGeothermal Sources [J]. Energy, 2011, 36 (5): 2639-2649.
  • 6Xu Zhengxin,Liu Jingping,Fu Jianqin. Analysis and comparison of typical exhaust gas energy recovery bottoming cycles[SAE Paper 2013-01-1648[R].2013.
  • 7Sprouse C,Depcik C. Review of organic rankine cycles for internal combustion engine exhaust waste heat recovery[J].Applied Thermal Engineering,2013,(1-2):711-722.
  • 8Jung Daebong,Park Sungjin,Min Kyoungdoug. Study on the application of the waste heat recovery system to heavy-duty series hybrid electric vehicles[SAE Paper 2013-01-1455[R].2013.
  • 9Yamaguchi T,Aoyagi Y,Osada H. BSFC improvement by diesel-rankine combined cycle in the high EGR rate and high boosted diesel engine[SAE Paper 2013-01-1638[R].2013.
  • 10Hossain S,Bari S. Additional power generation from the exhaust gas of diesel engine by bottoming rankine cycle[SAE Paper 2013-01-1639[R].2013.

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部