期刊文献+

基于分水岭与多尺度相结合的影像分割方法 被引量:2

A High Resolution Image Segmentation Method of a Combination of Watershed and Multi-scale
下载PDF
导出
摘要 分水岭分割是一种应用较广泛的影像分割方法,它能自动生成单像素宽度的封闭轮廓,但需要把影像分割成过多小区域,从而导致影像分割耗时且工作量大。本文就此提出一种分水岭和多尺度相结合的高分辨率影像分割方法。该方法首先运用分水岭方法对融合了亮度梯度和纹理梯度的综合梯度进行计算,然后将同质性度量值最小的区域对合并,最后结合改进区域邻接图进行区域合并。实验结果与基于分水岭和区域合并的影像分割算法得到的结果进行比较,证明该方法不仅能充分利用高分辨率遥感影像中地物的光谱、形状、纹理等特征,而且减少了计算时间。 Watershed segmentation is a widely used automatic scheme to generate close outlines.It might give rise to closed contour of single pixel width.Using this method the image needs to be divided into many small areas which leads to huge workload.This paper proposes a watershed and multi-scale comprehensive image segmentation method.Firstly,calculate the comprehensive gradient which merges the brightness gradient and the texture gradient by using watershed algorithm,then,merge the area of the smallest homogeneity measure(spectral,shape and texture homogeneity metric),and the last,improve region adjacency graph.The experimental result is compared with watershed and region merging image segmentation algorithm,this method proves that it can not only take the advantage of high resolution remote sensing image features in the spectrum,shape,texture and other characteristics,and reduce the computational time.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2012年第1期40-44,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11101101) 广西自然科学基金重点资助项目(2011GXNSFD018003)
关键词 影像分割 分水岭方法 多尺度分割 耕地信息提取 image segmentation watershed algorithm multi-scale segmentation farmland information extraction
  • 相关文献

参考文献4

二级参考文献21

  • 1杨文明,陈国斌,沈晔湖,刘济林.一种基于分水岭变换的图像分割方案[J].浙江大学学报(工学版),2006,40(9):1503-1506. 被引量:22
  • 2丛培盛,孙建忠.分水岭算法分割显微图像中重叠细胞[J].中国图象图形学报,2006,11(12):1781-1783. 被引量:27
  • 3Vincent L,Soille P.Watersheds in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(6):583-598.
  • 4Smet P D,Pires R L.Implementation and Analysis of an Optimized Rain Falling Watershed Algorithm[C] //Proc.of SPIE'00.San Diego,CA,USA:[s.n.] ,2000:759-766.
  • 5Karantzalos K,Argialas D.Improving Edge Detection and Watershed Segmentation with Anisotropic Diffusion and Morphological Levellings[J].International Journal of Remote Sensing,2006,27(24):5427-5434.
  • 6Salembier P, Serra J. Flat zones filtering, connected operator, and filters by reconstruction[J]. IEEE Transactions on Image Processing, 1995, 4(8): 1153~1160
  • 7Salembier P. Morphological multi-scale segmentation for image coding[J]. Signal Processing, 1994, 38(3): 359~386
  • 8Vincent L. Morphological gray scale reconstruction in image analysis: Applications and efficient algorithms[J]. IEEE Transactions on Image Processing, 1993, 2(2): 176~201
  • 9Crespo J, Maojo V. New result on the theory of morphological filters by reconstruction[J]. Pattern Recognition, 1998, 31(4): 419~429
  • 10Hansen Michel W, Higgins Willian E. Watershed-based maximum-homogeneity filtering[J]. IEEE Transactions on Image Processing, 1999, 8(7): 982~987

共引文献107

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部