期刊文献+

一种汽车防抱死制动系统的非线性控制方法 被引量:6

Nonlinear control method for automotive anti-lock braking system
下载PDF
导出
摘要 针对具有不连续特性的开关阀防抱死制动系统,本文研究了控制器设计方法.首先讨论了开关阀防抱死制动系统增压、保压、减压三种工作模式的动态特性,给出一种具有滑移率连续动态和执行器不连续动态的开关阀防抱死制动系统的数学描述.在此基础上,考虑到应用性和鲁棒性要求,提出一种以系统状态作为切换规则保证系统稳定性的非线性控制器设计方法,其思想是基于Filippov意义下的Lyapunov方法设计两个切换面,将状态空间划分形式作为切换规则,通过切换面选择保证闭环系统的稳定性.为了避免频繁的模式切换,本文进一步将控制目标调整为平衡区域的收敛控制,并讨论了收敛区域大小对闭环控制性能的影响.仿真与实验结果表明本文给出的方法控制参数少,具有高效和平顺的制动性能. A controller is designed for anti-lock braking system(ABS) with discontinuous characteristics of on/off valves.Firstly,the dynamic characteristics under Increase,Hold and Decrease modes are discussed,and a math description is given for ABS with on/off valves,including wheel slip continuous dynamics and actuator discontinuous dynamics.Considering the requirement on applicability and robustness,an approach for nonlinear controller design is proposed which uses system state as switching law to guarantee the stability.The idea is to develop two switching surfaces using Lyapunov method in the sense of Filippov,and the state space partition is regarded as the switching law,with the stability ensured via switching surfaces selection.Further,to avoid frequent switches,the control objective is modified to the convergence of an equilibrium set,and the influence of the size about the equilibrium set on the closed-loop system performance is discussed.Simulation and experiment tests illustrate that both high braking efficiency and ride quality are obtained with few control parameters.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第5期7-13,共7页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(61034001) 中央高校基本科研业务费专项资金项目(HIT.NSRIF.2013035)
关键词 防抱死制动系统 开关阀 滑移率 切换面 anti-lock braking system on/off valve wheel slip switching surface
  • 相关文献

参考文献15

  • 1顾柏良,唐振声.BOSCH汽车工程手册[M].北京:北京理工出版社,1998:332.
  • 2JOHANSEN T A, PETERSEN I, KALKKUHL J, et al. Gain-scheduled wheel slip control in automotive brake systems[ J]. IEEE Transaction on Control and SystemTechnology, 2003, 11 (6) : 799 - 811.
  • 3TANELLI M, ASTOLFI A, SAVARESI S. Robust nonlinear output feedback control for brake-by-wire control systems[ J]. Automatica, 2008, 44(4) : 1078 - 1087.
  • 4MORSELLI R, ZANASI R. Self-tuning control strategy for antilock braking systems [ C ]//Proceedings of the American Control Conference. Piscataway:IEEE, 2006 : 5861 - 5866.
  • 5PASILLAS - LEPINE W. Hybrid modeling and limit cycle analysis for a class of five-phase anti-lock brake algorithms [ J ]. Vehicle System Dynamics, 2006, 44 (2) : 173 - 188.
  • 6KUO C Y, YEH E C. A four-phase control scheme of an antiskid brake system for all road conditions [ J ]. Proc IMechE, Part D. J Automobile Engineering, 1992, 206 (4) : 275 -283.
  • 7TANELLI M, OSORIO G, BERNARDO M, et al. Existence, stability and robustness analysis of limit cycles in hybrid anti-lock braking systems[ J]. International Journal of Control, 2009, 82(4) : 659 - 678.
  • 8OLSON B J, SHAW S W, STEPAN G. Nonlinear dynamics of vehicle traction [ J ]. Vehicle System Dynamics, 2003, 40(6): 377-399.
  • 9EGERSTEDT M, WARDI Y, DELMOTTE F. Optimal control of switching times in switched dynamical systems [C]//Proceedings of the 42th IEEE Conference on Decision and Control. Piscataway: IEEE, 2003. 2138- 2143.
  • 10BACCIOTrI A. Stabilization by means of state space depending switching rules [ J ]. Systems & Control Letters, 2004, 53(3/4): 195-201.

共引文献1

同被引文献31

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部