摘要
目的:应用近红外光谱技术和化学计量学方法,建立板栗品质分析的近红外光谱模型。方法:采用傅里叶变换近红外光谱仪,采集样品的近红外漫反射光谱,再用传统理化分析方法测得样品的各项品质参数,采用偏最小二乘法(PLS)建立定标模型,内部交叉验证法对模型进行检验。结果:对板栗分别建立了水分、淀粉、硬度和糖度的PLS模型,4种PLS模型都非常理想,模型的相关系数均大于0.99。结论:采用近红外光谱法可以实现板栗品质指标的快速无损检测。
Objective:To quantitative determinate several components of fresh chestnut directly and rapidly by using near infrared spectroscopy and chemometrics.Method:The NIR spectra of calibration set samples were collected with FT-NIR spectrometer,and the reference concentrations of components were analyzed with the standard chemical analysis methods.The calibration models were established using partial least square(PLS) regression and validated with leave-one-out cross validation method.Result:Result:The calibration models for analysis of water,amylum,texture and sugar contents were established with correlation coefficients over 0.99.Conclusion:It is possible to use NIR method to rapidly determinate the content of the above components in fresh chestnut.
出处
《食品科技》
CAS
北大核心
2012年第5期42-45,51,共5页
Food Science and Technology
基金
浙江省科技厅重大招标科研项目(2006C12103)
关键词
板栗
近红外光谱法
偏最小二乘法(PLS)
含量测定
fresh chestnut
near infrared spectroscopy(NIR)
partial least square(PLS)
content determination