摘要
运用化分散为集中的思想 ,把所有的井点都放在同一个单位网格内考虑 .在坐标可平移、旋转的条件下 ,利用寻找点群、有限步骤搜索法 ,对钻井布局的三个问题进行了解答 .对问题一 ,给出了两个不同算法 .并对题目提供的数据进行了求解 ,算法 1得到的结点为 (0 .36 1,0 .46 1) ,最多有 4个旧井点被同时利用 ,它们是第 2、4、5、10个井点 ;算法 2得到的结点为 (0 .390 ,0 .5 0 5 ) ,最多有 4个井点被利用 ,它们是第 2、4、5、10个井点 .对问题二 ,以结点为中心旋转一定的角度后 ,归结为问题一进行求解 ,求解结果为当网格倾斜角为 0 .78弧度 (相对原坐标系 ) ,结点平移到(0 .75 ,0 .0 76 )点 (在新坐标系下 ) ,可被同时利用的最多旧井点为 6个 ,它们是第 1、6、7、8、9、11个井点 ,对问题三 ,我们给出了充要条件 ,并给出了算法 .最后还分析了算法的优劣性 .
In this article,we use idea of turning dispersion into convergence and put all the well's points into the same unit net to think about it.And answer three questions of the distribution of well drilling by the way of searching for groups of points. fincite-step-searching underthe condition of translationg fcoordinate system or revolving coordinate system.To first question.we find two algo-rithms and make use of data that is given to find the solution.We seek coorlinate of net point is co.361,0.461)and mostly four old well's points are utilized at the same time by first algorithim,which are No.2,No,4,No.5,No.10.By second algorithm,we rechon the coordinate of net point is co.390,0.505).and that mostly four old well's points are utilizld which are No.2,No.4,No.10.To second question,we turn it into the first question by angling awt the center of net point.We seek that mostly six old well's points are utilized at the same time,which are No.1,No.6,No.7,No.8,No.9,No.11,when net is angled 0.78 radian.and net point is translated to (0.75,0.076)(at nwe coordinate system).To third question,wefind a necessary and sufficient condition and affer algorithms,At last,we analyse algorithms.
出处
《广西民族学院学报(自然科学版)》
CAS
2000年第1期67-71,共5页
Journal of Guangxi University For Nationalities(Natural Science Edition)
关键词
坐标距离
欧氏距离
判断矩阵
钻井布局
钻探
Coordinate distance
Euclidean distance
Image point
Judgement matrix