期刊文献+

基于传统遗传算法的改进排爆机器人路径规划研究 被引量:3

Mobile robot path planning based on improved genetic algorithm
下载PDF
导出
摘要 针对传统遗传算法进化速度慢、容易陷入局部最优点等缺陷,提出了改进后新的路径规划算法。在判断路径中,基于闵科夫斯基原理对障碍物进行扩展;在构造路径中基于可视图原理进行改进,构造机器人的真正可行区域;在最短路径中对遗传算法中种群的初始化,个体的编码方法等问题做了详细的研究,并在选择算子中引入相似度的概念,大大扩大了初始种群的范围,避免进入局部最优点。最后通过仿真实验验证了此算法的可行性。 The traditional genetic algorithm has the faults of slow evolving speed being easy to get into local optimum etc.,an improved one based on it is provided.The improved one extends the barriers based on the principle of Minkowshi theory in the step of estimating the path and improves the graphic theory to construct the real feasible region.In the step of calculating the shortest path,population initialization individual coding method and so on are researched and the concept of similarity in the selection operator is imported which can enlarge the range of the early population and to avoid to get into the local optimum.At last,simulation test proves that the improved algorithm is feasible.
出处 《图学学报》 CSCD 北大核心 2012年第3期41-45,共5页 Journal of Graphics
基金 广东省科技计划资助项目(B01-D7041010) 华南理工大学高水平大学建设重点资助项目
关键词 计算机应用 遗传算法 排爆机器人 路径规划 computer application genetic algorithm mobile robot path planning
  • 引文网络
  • 相关文献

参考文献12

二级参考文献37

  • 1王强,姚进,王进戈.基于遗传算法的移动机器人的一种路径规划方法[J].哈尔滨工业大学学报,2004,36(7):867-870. 被引量:19
  • 2陈根社,陈新海.遗传算法的研究与进展[J].信息与控制,1994,23(4):215-222. 被引量:109
  • 3李擎,张伟,尹怡欣,王志良.一种用于最优路径规划的改进遗传算法[J].信息与控制,2006,35(4):444-447. 被引量:18
  • 4李兵,郑四发,曹剑东,杨扬,耿华,连小珉.求解客户需求动态变化的车辆路径规划方法[J].交通运输工程学报,2007,7(1):106-110. 被引量:30
  • 5GERKE M. Genetic path planning for mobile robots[C]//IEEE. Proceedings of the 1999 American Control Conference. San Diego: IEEE Press, 1999 : 2424-2429.
  • 6H u Y, Yang S X. A knowledge based genetic algorithm for path planning of a mobile robot[C]//IEEE. Proceedings of the 2004 IEEE international Conference on Robotics and Automation. New Orleans: IEEE Press, 2004:4350-4355.
  • 7TU J, YANG S. Genetic algorithm based path planning for a mobile robot[C]//IEEE. Proceedings of the 2003 IEEE International Conference on Robotics and Automation. Taipei: IEEE Press, 2003 : 1221-1226.
  • 8OSCAR Castillo, LEONARDO Trujillo. Multiple objective genetic algorithms for path planning optimization in autonomous mobile robots[J]. Soft Computing, 2007,11 ( 1 ) : 269-279.
  • 9HOWDEN W. E. The sofa problem[J].The Computer Journal, 1968,11(3):299-301.
  • 10DE JONG K A. An analysis of the behavior of a class of genetic adaptive systems[D]. Michigan: University of Michigan, 1975.

共引文献57

同被引文献27

引证文献3

二级引证文献18

;
使用帮助 返回顶部