期刊文献+

电荷俘获存储器阻挡层研究进展

Research Progress of Blocking Layers in Charge Trapping Memories
下载PDF
导出
摘要 随着非挥发性存储器(NVM)存储单元的特征尺寸进入20 nm节点,使用单层SiO2作为阻挡层的传统电荷俘获存储器结构性能上逐渐受到限制。基于阻挡层在存储器栅堆栈中的作用与基本要求,首先,指出单层SiO2作为阻挡层存在的主要问题,然后对高介电常数材料作为阻挡层时,其禁带宽度、介电常数、内部的缺陷密度以及退火工艺等方面对存储特性的影响进行了分析,同时对近年来研究较多的阻挡层能带工程进行了详细介绍,如SiO2和Al2O3的复合阻挡层结构、多层高介电常数材料的阻挡层结构等。最后,对目前研究进展中存在的问题以及未来的研究方向和趋势进行了总结和展望。 With the non-volatile memory(NVM) technology enters 20 nm-node,conventional charge trapping memories with the SiO2 blocking layer confront severe performance limitation.Based on the function and basic requirements of the blocking layers in the charge trapping me-mory grid stack,the main problems of the single SiO2 blocking layer are pointed out firstly.And then,the impact of the band gap,dielectric constant,internal defect density and annealing process of the high-k blocking layer as the blocking layer on the memory characteristics is analyzed.Moreover,the energy band engineering of blocking layers researched much recently,such as SiO2/Al2O3 stacked structure and the multi-layer high-k material blocking layer structure,is discussed in detail.Finally,the problems of latest research progress as well as the direction and tendence for future research are given.
出处 《微纳电子技术》 CAS 北大核心 2012年第6期360-368,共9页 Micronanoelectronic Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2011CBA00600 2010CB934200) 国家自然科学基金资助项目(60825403 61176080 61176073) 国家重大科技专项(2009ZX02023005)
关键词 电荷俘获存储器(CTM) 阻挡层 高K材料 隧穿 AL2O3 charge trapping memory(CTM); blocking layer; high-k material; tunneling; Al2O3
  • 相关文献

参考文献53

  • 1HONG J S,LEE S H,AHN S J,et al.Phase-change chalco-genide nonvolatile RAM completely based on CMOS technolo-gy[C]//Proceedings of International Symposium on VLSI Technology,Systems,and Applications.Hsinchu,Taiwan,China,2003:29-31.
  • 2ZHUANG W W,PAN W,ULRICH B D,et al.Novel colos-sal magnetoresistive thin film nonvolatile resistance random ac-cess memory(RRAM)[C]//Proceedings of IEEE Electron Devices Meeting.Hong Kong,China,2002:193-196.
  • 3The International Roadmap Committee.International techno-logy roadmap for semiconductors[J].Electrical and Electronic Engineering,2009,6(5):371-377.
  • 4WEGENER H A R,LINCOLN A J,PAO H C,et al.The variable-threshold transistor,a new electrically-alterable,non-destructive READ-only storage device[J].IEEE Transactions on Electron Devices,1968,15(6):420-421.
  • 5CHANG H L,KYUNG I C,MYOUNG K C,et al.A novel SO-NOS structure of SiO 2/SiN/Al 2 O 3 with TaN metal gate for multi-giga bit flash memeries[C]//Proceedings of the IEEE Electron Devices Meeting.Washington DC,USA,2003:613-616.
  • 6WU K H,CHIEN H C,CHAN C C,et al.SONOS device with tapered bandgap nitride layer[J].IEEE Transactions on Electron Devices,2005,52(5):987-992.
  • 7WANG S Y,LAI E K,SHIH Y H,et al.BE-SONOS:a bandgap engineered SONOS with excellent performance and reliability[C]//Proceedings of IEEE Electron Devices Mee-ting.Washington DC,USA,2005:547-550.
  • 8ZHU C X,HUO Z L,XU Z G,et al.Performance enhance-ment of multilevel cell nonvolatile memory by using a bandgap engineered high-κtrapping layer[J].Applied Physics Letters,2010,97(25):253503-1-253503-3.
  • 9POWER J R,GONG Y,TEMPEL G,et al.Improved relia-bility of a high-k IPD flash cell through use of a top-oxide[C]//Proceedings of the IEEE Non-Volatile Semiconductor Memory Workshop,2007:27-29.
  • 10WELLEKENS D,van HOUDT J.The future of flash memo-ry:is floating gate technology doomed to lose the race[C]//Proceedings of IEEE International Conference on Integrated Circuit Design and Technology.Minatec Grenoble,France,2008:189-194.

二级参考文献95

  • 1Sakotsubo Y, Terai M, Kotsuji S, et al. A new approach for improving operating margin of unipolar ReRAM. In: VLSI Symposia on Technology, session 8-2, 2010. 87-88.
  • 2Baek I G, Lee M S, Seo S, et al. Highly sealable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: International Electron Device Meeting (IEDM), session 23-6, 2004. 587-590.
  • 3Lee H Y, Chen P S, Wu T Y, et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. In: International Electron Device Meeting (IEDM), session 12-3, 2008. 297-300.
  • 4Ho C H, Lai E K, Lee M D, et al. A highly reliable self-aligned graded oxide WOx resistance memory: conduction mechanisms and reliability. In: VLSI Symposia on Technology, session 12B-2, 2007. 228-229.
  • 5Chien W C, Chen Y C, Lal E K, et al. Unipolar switching behaviors of RTO WOx RRAM. IEEE Electr Device Lett, 2010, 31:126-128.
  • 6Chen Y C, Chien W C, Lin Y Y, et al. Cu-based and WOx-based resistive switching memories (ReRAMs) for embedded and stand-alone applications. In: International Conference on Solid-State and Integrated-Circuit Technology, 2010. invited.
  • 7Chien W C, Chen Y C, Lee F M, et al. A novel Ni/WOX/W ReRAM with excellent retention and low switching current. In: 2010 International Conference on Solid State Devices and Materials (SSDM), 2010. 1104-1105.
  • 8Lai E K, Chien W C, Chen Y C, et al. Tungsten oxide resistive memory using rapid thermal oxidation of tungsten plugs. Japan J Appl Phys, 2010, 49:04DD17-04DD17-4.
  • 9Chien W C, Chen Y C, Lai E K, et al. High-speed multilevel esistive RAM using RTO WOx. In: 2009 International Conference on Solid State Devices and Materials (SSDM), session G-7-3, 2009. 1206-1207.
  • 10Lee M J, Lee C B, Kim S, et al. Stack friendly all-oxide 3D RRAM using GaInZnO peripheral TFT realized over glass substrates. In: International Electron Device Meeting (IEDM), session 4.4, 2008. 85-88.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部