期刊文献+

生物质花生壳热分解及热分解模拟 被引量:2

Thermal Decomposition Kinetic and Simulation of Biomass Peanut Shell
下载PDF
导出
摘要 用NETZSCH-STA409PC热分析仪研究了生物质花生壳的分解规律和动力学.花生壳的热分解主要有3个失重过程,第1个发生在80~100℃,为失水过程,对应DSC为吸热,失重量6%;第2个发生在100~380℃,为花生壳的热分解过程,该过程为吸热,失重量54%;第3个发生在380~700℃,为热分解残余有机物缓慢分解过程,失重量为16%;700℃后,基本恒重.讨论升温速率、粒度、气速对热分解曲线的影响.拟合了动力学方程函数,并求出动力学参数.花生壳分解可用三维扩散模型(D3)模拟,活化能E=141.67kJ.mol-1,指前因子lgA=8.645 4,用所得D3模型动力学方程预测,在花生壳分解过程中于360℃保温12min它的分解率近100%.这个结果能够用于优化气化分解过程. This paper discusses thermal decomposition of biomass peanut shell with NETZSCH-STA409PC thermal analysis. Peanut shell thermal decomposition is composed of 3 TG loss, the first step TG loss is 6℃ dehydration and occurred at 80--100℃ ; the second step TG loss is 54 % and occurred at 320--380 ℃ ,this step is the mainly peanut shell thermal decom- position; the third step TC- loss is 16% and occurred at 380--700℃, it is the thermal decomposition of residual ; Effects of temperature rising rale, grain size and purge-gas flow rate on peanut shell decomposition character are studied. Kinetic function was obtained and kinetic parameters were calculated. The correlation coefficient is 0. 996 7. The results show that peanut shell decomposition is a 3-dim. diffusionJanders type reaction(D3), The reaction activation energy E=41. 67 kJ · mol^- 1, lgA= 8. 645 4. The D3 kinetic function predicts that peanut shell decomposition is 100% at 360℃ for 12 minutes. This result can be used to optimize gasification process.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期85-87,共3页 Journal of Henan Normal University(Natural Science Edition)
关键词 生物质 花生壳 热分解 动力学 热分析 模拟 biomass peanut shell thermal decomposition kinetic thermal analysis simulation
  • 相关文献

参考文献9

二级参考文献140

共引文献89

同被引文献27

  • 1杨世关,李继红,孟卓,郑正.木质纤维素原料厌氧生物降解研究进展[J].农业工程学报,2006,22(S1):120-124. 被引量:25
  • 2刘建华,郭洪光,刘艳君.气相色谱法测定工业废水厌氧反应中的挥发性脂肪酸[J].长春师范学院学报(自然科学版),2005,24(3):42-43. 被引量:9
  • 3YANG S G, LI J H, ZHENG Z, et al . Lignocellulosic structural changes of spartina ahemiflora after anaerobic mono and codigestion[J]. International Biodeterioration & Biodegradation,2009, 63 (5) : 569 - 575.
  • 4LIMAYEM A, RICKE C S. Lignocelluosic biomass for bioethanol production: Current perspectives, potential issues and future prospects[ J]. Progress in Energy and Combustion Science, 2012,38 (4) : 449 - 467.
  • 5LI J B, GELLERSTEDT G, TOVEN K. Steam explo- sion lignins: their extraction, structure and potential as feedstock for biodiesel and chemicals [ J ]. Bioresource Technology, 2009, 100 (9) : 2556 - 2561.
  • 6KAAR W E, GUTIERREZ C V, KINOSHITA C M.Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol[ J ]. Biomass and Bioenergy, 1998, 14(3): 277-287.
  • 7WANG J, YUE Z B, CHEN T H, et al. Anaerobic di- gestibility and fiber composition of bulrush in response to steam explosion [ J]. Bioresource Technology, 2010, 101(17) : 6610 -6614.
  • 8JAROSLAV J,STRANSKA E, FRANCISCI E P, et al. Blood cultures evaluation by gas chromatography of vola- tile fatty acids[ J]. Med Sci Monit,2000,6:605 -610.
  • 9SULLIVAN H M, MARTIN S A. Effects of a Saccharom vces cerevisiae Culture on in vitro Mixture Rumen Mi- croorganism Fermentation [ J ]. Dairy Sci, 1999, 82: 201 l - 2016.
  • 10浩春,卢佩章.气相色谱法[M].北京:科学出版社,1998.

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部