期刊文献+

一种新的基于误差切换的盲均衡算法 被引量:8

A New Blind Equalization Algorithm Based on the Error Switch
下载PDF
导出
摘要 在 CMA算法基础上 ,利用多电平正交幅度调制 (MQAM)信号的分布特点 ,提出了一种适合于 MQAM数字通信系统的误差切换的盲均衡算法 (ESA)。理论分析和计算机模拟表明 ,该算法具有较快的收敛速度和较小的剩余误差 。 In this paper, a new blind equalization algorithm based on the error switching is proposed for MQAM communication system, taking advantage of the distribution property of the constellation of MQAM. Theoretical analysis and computer simulations show that the new blind equalization algorithm with fast convergence and less remaining error is very useful in practical application.
出处 《数字通信》 2000年第2期10-11,15,共3页 Digital Communications and Networks
关键词 盲均衡 常模算法 误差切换 数字通信 幅度调制 blind equalization constant module algorithm(CMA) error switch residual error
  • 相关文献

参考文献8

  • 1GODARD D N. Self recovering equalization and carrier tracking in twodimensinal system [J]. IEEE Trans Commun. , 1980, COM - 28: 1867一1875.
  • 2GITLIN R D, HAYES J F,WEINTEIN S B. Data communicationprinciples[M]. Plenum Press, 1992.
  • 3TREICHLER J R. AGEE B G. A new approach to multipathcorrection of constant modulus signals[J]. IEEE Trans ASSP,1983,ASSP--31(2):459--472.
  • 4徐金标,葛建华,王新梅.一种新的盲均衡算法[J].通信学报,1995,16(3):78-81. 被引量:26
  • 5吴小俊,王士同,杨静宇,曹奇英.基于正交多项式函数的神经网络及其性质研究[J].计算机工程与应用,2002,38(9):25-26. 被引量:16
  • 6SHALVI O,WEINSTEIN E. New criteria for blind deconvolution ofnonminimum phase systems (channel)[J]. IEEE Trans IT, 1990,36(2):312--321.
  • 7YAMAZAKI K,et al. Candidate admissible blind algorithms for QAMcommunication systems[C]. In: :ICC'92, 1992,351.4.1--351.4. 5.
  • 8POCCHI G, PRATI G. Blind Equalization and Carrier Recovery Usinga "Stop and Go〃 Decision-Directed Algorithm[J]. IEEE Trans. onCommun. ,1987,35(9) :877--887.

二级参考文献9

  • 1孙增圻.智能控制理论与应用[M].北京:清华大学出版社,1997.169-177.
  • 2J J Buckley,Yoichi Hayashi. Neural Nets can be universal approximators for fuzzy functions[C].In :IEEE lnt Conf NN, 1997:2347~2349
  • 3王士同模糊神经网络及其程序设计[M].上海:上海科学技术文献出版社,1999
  • 4Thomas Feuring,Wolfram-M Lippe.The fuzzy neural network approximation lemma[J].Fuzzy Sets and Systems, 1999; (102) :227~236
  • 5A Namatame,N Ueda. Pattern Classification with Chebyshev neuralnetworks[J].Int J NN, 1992;3:23~31
  • 6Tsu-Tian Lee,Jin-Tsong Jeng.The Chebyshev-Polynomials-Based Unified Model Neural Networks for function Approximation[J].IEEETransSMC, 1998 ;28(6) :925~935
  • 7T J Rivlin Chebyshev.polynomials form approximation theory to algebra and number theory[M].New York:Wiley,1990
  • 8D Elliott,D F Paget. Error of truncated Chebyshev series and othernear minmax polynomial approximation[J].J Approx Theory,1987;50:49~57
  • 9李明国,郁文贤.神经网络的函数逼近理论[J].国防科技大学学报,1998,20(4):70-76. 被引量:21

共引文献38

同被引文献30

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部