期刊文献+

前移存在调整时间综合调度工序的算法 被引量:6

Algorithm of Moving Integrated Scheduling Procedures with Set-up Time Forward
下载PDF
导出
摘要 针对目前存在调整时间的综合调度算法只考虑快速插入调整时间实现调度方案,没有考虑调整时间会随工序次序改变影响调度结果的问题,提出通过改变工序调度次序前移存在调整时间综合调度工序的算法。该算法在保证相关工序不后移的条件下,通过改变相同加工设备上具有相同工艺紧后工序的工序调度次序,从而改变工序之间的调整时间,使调整工序最晚结束时间提前,使其工艺紧后工序开始时间有可能提前,从而实现提高设备利用率,提前产品最终完工时间。实例表明该算法可获得存在调整时间的综合调度问题的更优解。 The current integrated scheduling algorithms just consider how to realize scheduling plan by inserting set-up time quickly, but not consider the problem that the total set-up time will change along with the changing of scheduling order of procedures, which can influence the scheduling result. Aiming at this problem, integrated scheduling algorithm of shortening total set-up time by changing the scheduling order of procedures is proposed. This algorithm is under the pre-condition of not moving immediately successor procedures backward, reduces the ratio of set-up time in total working hours by changing the scheduling order of procedures with same priority level partly on same machine, and improves the machine utilization efficiency. Example shows this algorithm can obtain the better result of integrated scheduling problem with set-up time in secondary time complexity.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第12期169-177,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金(60873019 61073043) 黑龙江省自然科学基金(F200901 F201101) 中国博士后科学基金(20090460880) 黑龙江省博士后科学基金(LBH-Z09214) 哈尔滨市优秀学科带头人(2010RFXXG054 2011RFXXG015)资助项目
关键词 调整时间 综合调度 调度算法 工序调度次序 设备利用率 Set-up time Integrated scheduling Scheduling algorithm Scheduling order of proceduresMachine utilization efficiency
  • 相关文献

参考文献7

二级参考文献51

共引文献67

同被引文献55

  • 1张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:115
  • 2熊禾根,李建军,孔建益,杨金堂,蒋国璋.考虑工序相关性的动态Job shop调度问题启发式算法[J].机械工程学报,2006,42(8):50-55. 被引量:33
  • 3苏亚.单机带调整时间加权成套订单数问题遗传算法研究[J].工业工程,2007,10(3):119-122. 被引量:1
  • 4ZHANG H P, GEN M. Multistage-based genetic algorithm for flexible job-shop scheduling problem[J]. Complexity International, 2005, 11 : 223-232.
  • 5YOO Y B, HELZER D. The parallel genetic algorithm for the job shop scheduling problem[C]//Proceedings of the IASTED International Conference on Artificial Intelligence and Soft Computing, 2003, 7: 249-254.
  • 6ENGIN O, CERAN G, YILMAZ M K. An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems[J]. Applied Soft Computing Journal, 2011, 11(3): 3056-3065.
  • 7MIRSANEI H S, ZANDIEH M, MOAYED M J, et al. A simulated annealing algorithm approach to hybrid flow shop scheduling with sequence-dependent setup times [J]. Journal of Intelligent Manufacturing, 2011, 22(6): 965-978.
  • 8GLOVER F. Future paths for integer programming and links to artificial intelligence[J]. Computers & Operations Research, 1986, 13(5): 533-549.
  • 9FOO Y S, TAKEFUJI Y. Stochastic neural networks for solving job-shop scheduling[C/CD]//Problem Representation, Stochastic Neural Networks for Solving Job-shop Scheduling: Part2. Architecture and Simulations. IEEE International Conference on Neural Networks, San Diego, 1998.
  • 10LINT L, HORONG S J, KAO T W, et al. An efficient job-shop scheduling algorithm based on particle swarm optimization[J]. Expert Systems with Applications, 2010, 37(3): 2629-2636.

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部