期刊文献+

物联网信息感知与交互技术 被引量:221

Information Sensing and Interaction Technology in Internet of Things
下载PDF
导出
摘要 信息感知作为物联网的基本功能,是物联网信息"全面感知"的手段.信息交互是物联网应用与服务的基础,是物联网"物物互联"的目的.随着物联网研究热潮的兴起,以传统无线传感器网络为核心的感知网络研究迅速升温,并在信息感知与交互方面取得了大量研究成果.文章分析了物联网信息感知与交互方面的最新研究进展.在信息感知方面,从数据收集、清洗、压缩、聚集和融合几个方面,梳理归纳了数据获取和处理的主要方法.在信息交互方面,提出了物联网信息交互的基本模型,分析总结了信息交互涉及的主要技术.在此基础上,讨论了物联网信息感知与交互研究的热点问题,包括新的感知技术、能效平衡、信息安全和移动感知网络等.最后,指出了物联网信息感知与交互技术发展面临的问题和挑战,展望了未来的研究方向. Information sensing is the basic function of Internet of Things (IoT), by which "Completely Sensing" is implemented. Information interaction is the goal of "Thing-to-Thing Interconnection" which supports the service and application of IoT. Along with the upsurge of IoT research and application, there are much research rapidly focus on the sensing network which is mainly based on the wireless sensor network. As information sensing and interaction have been deeply studied recently, it is necessary to summarize the latest progression. Firstly, the main information sensing methods, such as data collection, cleaning, compression, aggregation and fusion, are reviewed. Secondly, a basic information interaction model is proposed and the main information interaction techniques are discussed in detail. Thirdly, some active topics about information sensing and interaction, such as new sensing techniques, energy efficiency, security and mobile sensing network, are addressed. Finally, we present the challenges for the research of both information sensing and interaction, and point out the future work in this area.
出处 《计算机学报》 EI CSCD 北大核心 2012年第6期1147-1163,共17页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2011CB302703) 国家自然科学基金(61171169 61133003 60825203 60973057)资助~~
关键词 物联网 信息感知 信息交互 无线传感器网络 压缩感知 能量高效 Internet of Things information sensing information interaction wireless sensornetwork compressive sensing energy-efficient
  • 相关文献

参考文献4

二级参考文献44

  • 1颜振亚,郑宝玉,李世唐.能量有效的分布式粒子滤波[J].电子与信息学报,2007,29(7):1638-1641. 被引量:3
  • 2Cullar D, Estrin D, Strvastava M. Overview of sensor networks. IEEE Computer, 2004, 37(8): 41-49.
  • 3Madden S, Franklin M J, Hellerstein J M, Hong W. The design of an acquisitional query processor for sensor networks//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego, California, 2003: 491-502.
  • 4Manihi A, Nath S, Gibbons P B. Tributaries and deltas: Efficient and robust aggregation in sensor network streams// Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland, 2005: 287-298.
  • 5Silberstein A, Munagala K, Yang J. Energy-efficient monitoring of extreme values in sensor networks//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data. Chicago, Illinois, 2006:169-180.
  • 6Considine J, Li F, Kollios G, Byers J. Approximate aggregation techniques for sensor databases//Proceedings of the 20th International Conference on Data Engineering. Boston, MA, 2004:449-460.
  • 7Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada, 2004:588- 599.
  • 8Deshpande A, Guestrin C, Hong W, Madden S. Exploiting correlated attributes in acquisitional query processing//Proceedings of the 21st International Conference on Data Engineering. Tokyo, Japan, 2005: 143-154.
  • 9Chu D, Deshpand A, Hellerstein J M, Hong W. Approximate data collection in sensor networks using probabilistic models//Proceedings of the 22nd International Conference on Data Engineering. Atlanta, 2006:48.
  • 10Zhu X, Zhang S, Zhang J, Zhang C. Cost-sensitive imputing missing values with ordering//Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, Canada, 2007:1922 -1923.

共引文献52

同被引文献1758

引证文献221

二级引证文献968

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部