期刊文献+

Error estimates of triangular mixed finite element methods for quasilinear optimal control problems 被引量:1

Error estimates of triangular mixed finite element methods for quasilinear optimal control problems
原文传递
导出
摘要 The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results. The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2012年第3期397-413,共17页 中国高等学校学术文摘·数学(英文)
关键词 A priori error estimate quasilinear elliptic equation generalconvex optimal control problem triangular mixed finite element method A priori error estimate, quasilinear elliptic equation, generalconvex optimal control problem, triangular mixed finite element method
  • 相关文献

参考文献26

  • 1Arada N,Casas E,Tr(o)ltzsch F. Error estimates for the numerical approximation of a semilinear elliptic control problem[J].Computational Optimization and Applications,2002,(02):201-229.
  • 2Babuska Ⅰ,Strouboulis T. The Finite Element Method and Its Reliability[M].Oxford:Oxford University Press,2001.
  • 3Becker R,Kapp H,Rannacher R. Adaptive finite element methods for optimal control of partial differential equations:basic concept[J].SIAM Journal on Control and Optimization,2000,(01):113-132.doi:10.1137/S0363012999351097.
  • 4Brezzi F. On the existence,uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[J].Rairo Analyse Numerique,1974,(02):129-151.
  • 5Brezzi F,Fortin M. Mixed and Hybrid Finite Element Methods[M].Beilin:Springer-Verlag,1991.
  • 6Chen Y,Liu W. Posteriori error estimates for mixed finite elements of a quadratic optimal control problem[J].Recent Progress Comp Appl PDEs,2002.123-134.
  • 7Chen Y,Liu W. Error estimates and superconvergence of mixed finite element for quadratic optimal control[J].Int J Num Anal Model,2006,(03):311-321.
  • 8Chen Y,Liu W. A posteriori error estimates for mixed finite element solutions of convex optimal control problems[J].Journal of Computational and Applied Mathematics,2008,(01):76-89.doi:10.1016/j.cam.2006.11.015.
  • 9Chen Y,Lu Z. Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems[J].Computer Methods in Applied Mechanics and Engineering,2010,(01):1415-1423.
  • 10Chen Y,Lu Z. Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods[J].Finite Elements in Analysis and Design,2010,(04):957-965.

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部