期刊文献+

基于拥挤度的参数自适应蚁群系统 被引量:1

Parameter adaptive ant colony system based on crowding degree
下载PDF
导出
摘要 在蚁群算法中,如何有效处理加速收敛和出现早熟、停滞现象的矛盾一直是一个困难的问题。通过引入拥挤度来加强搜索过程中蚂蚁之间的协调和配合,提出了一种基于拥挤度的参数自适应蚁群算法。该算法采用提前主动预防早熟的策略,将拥挤度嵌入到蚁群算法的状态转移和信息素更新过程中,让局部信息素更新参数随局部搜索状态自适应地调整,全局信息素更新参数随全局搜索状态自适应地调整,大大提高了算法全局搜索能力和自适应能力,同时采用了一种简单有效的变异算法来加快收敛速度。用多个TSPLIB范例进行比较实验,结果表明,改进算法无论是求解质量、稳定性以及收敛速度都有显著提高。 In ant colony algorithm, how to effectively deal with the contradiction between the convergence speed and the precocity and stagnation has been a difficult problem. A parameter adaptive ant colony system is proposed by introducing the crowding degree to strengthen the coordination and cooperation between ants in the search process. In the presented ant colony algorithm, it adopts the proactive strategies to avert the precocity and stagnation in advance, and embeds the crowding degree into the state transition and the pheromone update. The parameter in the local pheromone update adaptively changes with the local search state, and the parameter in the global pheromone update adaptively changes with the global search state. These make its global searching ability enhance remarkably. At the same time a simple and efficient mutation algorithm is adopted to accelerate convergence. Experimental resuits show that the presented algorithm has much higher quality and stability and convergence speed than that of classical ant colony algorithm.
作者 牟廉明
出处 《计算机工程与应用》 CSCD 2012年第20期46-50,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.10872085) 四川省教育厅重大培育项目(No.07ZZ016) 四川科技厅应用基础研究基金(No.07JY029-125)
关键词 蚁群系统 参数自适应 变异算法 旅行商问题 ant colony system parameter adaptive mutation algorithm traveling salesman problem
  • 相关文献

参考文献17

  • 1Colomi A, Dorigo M, Maniezzo V.Distributed optimization by ant colonies[C]//Proc of the ECAL'91 European Conf of Artificial Life.Paris : Elsevier, 1991 : 134-144.
  • 2Dortgo M, Maniezzo V, Colorni A.Ant system: optimiza- tion by a colony cooperating Agents[J].IEEE Trans on Systems, Man, and Cybernetics Part B: Cybernetics, 1996, 26( 1 ) :29-41.
  • 3Dortgo erative M,Gambardella L M.Ant colony system:a coop- learning problem [J].IEEE 1997, 1(1) :53-66. approach to the traveling salesman Trans on Evolutionary Computation,.
  • 4Mullen R J,Monekosso D,Barman S, et al.A review of ant algorithms[J] .Expert Systems with Applications, 2009,36:9608-9617.
  • 5Ren Z G, Feng Z R,Ke L J, et al.New ideas for applying ant colony optimization to the set covering problem[J]. Computers & Industrial Engineering, 2010,58 : 774-784.
  • 6Yang J G,Zhuang Y B.An improved ant colony optimi- zation algorithm for solving a complex combinatorial optimization problem[J].Applied Soft Computing, 2010, 10: 653-660.
  • 7Yu B,Yang Z Z.An ant colony optimization model: the period vehicle routing problem with time windows[J]. Transportation Research Part E, 2011,47:166-181.
  • 8Stutzle T, Hoos H H.MAX-MIN ant system and local search for the traveling salesman problem[C]//IEEE Int'l Conf on Evolutionary Computation.Indianapolis: IEEE Press, 1997 : 309-314.
  • 9陈崚,沈洁,秦玲,陈宏建.基于分布均匀度的自适应蚁群算法[J].软件学报,2003,14(8):1379-1387. 被引量:111
  • 10肖鹏,李茂军,张军平,叶涛.单亲遗传算法及其在物流配送系统中的应用[J].系统工程,2000,18(1):64-66. 被引量:99

二级参考文献20

  • 1叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,29(7):597-601. 被引量:155
  • 2王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 3Colorini A , Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies.1st European Conf. Artificial Life, Pans., Elsevier, France, 1991
  • 4Colorini A, Dorigo M, Maniezzo V. 1991 Positive Feedback as a Search Strategy. Technical Report 91-016, Politecnico di Milano,1991
  • 5Brewington B,Gray R,Moizumi K.Mobile agents in distributed information retrieval[A].In:Klusch M.Intelligence Information Agent[C].Berln:Springer-Verlag,1999.355-395.
  • 6Dorigo M,Vittorio M,Alberto C.The Ant System:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics,1996,26 (1):1-13.
  • 7Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a Colony of Cooperating Agent[J]. IEEE Transactions on Systems, Man and Cybernetics, 1996, 260): 29-41.
  • 8Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 41(1): 53-66.
  • 9Kennedy J, Eberhart R C. Particle Swarm Optimization[C]// Proceedings of IEEE International Conference on Neural Networks. Piscataway, USA:[s. n.], 1995.
  • 10李茂军,童调生.单亲遗传算法及其全局收敛性分析[J].自动化学报,1999,25(1):68-72. 被引量:107

共引文献374

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部