期刊文献+

一种变步长双链量子遗传算法 被引量:13

Variable step double chains quantum genetic algorithm
下载PDF
导出
摘要 为了克服基于实数编码和目标函数梯度信息的双链量子遗传算法存在收敛速度慢和鲁棒性较差的缺点,提出了一种自适应变步长双链量子遗传算法。建立了反映目标适应度函数变化率的数学模型;构造了反映当前搜索点处适应度相对变化率的变步长系数k,通过调整k以改善适应度函数相对变化率从而优化解的搜索过程;提出了在迭代过程中的量子旋转门转角Dθ更新策略。针对复杂连续函数的优化问题,设计了算法的具体实施步骤,并对典型复杂函数进行了仿真。结果表明,该算法有效地改善了双链量子遗传算法的鲁棒性,加快了算法收敛速度。 A self-adaptive variable step double chains quantum genetic algorithm is proposed in this paper, which improves the slow convergence rate and the poor robustness of the double chains quantum genetic algorithm based on real-code and gradient information. In the algorithm, the mathematical model is constructed which reflects change rate of objective fitness function. Coefficient k of variable step is established to reflect the relative change rate of the fitness at the current searching place. The searching process of the optimal solution can be improved by adjusting the coefficient k of variable step which affects the relative change rates of the fitness. The updating strategies of quantum revolving gate A0 are constructed. The specific procedure of the algorithm is designed for the complex continuous space optimization problems. The results of simulation show that the algorithm can improve the robustness effectively and improve the convergence rate.
出处 《计算机工程与应用》 CSCD 2012年第20期59-63,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60871080)
关键词 量子计算 双链量子遗传算法 变步长 优化计算 quantum computation double chains quantum genetic algorithm variable step optimization algorithm
  • 相关文献

参考文献6

二级参考文献37

  • 1杨淑媛,刘芳,焦李成.量子进化策略[J].电子学报,2001,29(z1):1873-1877. 被引量:32
  • 2李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 3Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring. Proc of the 35th Annual Syrup on Foundations of Computer Science. New York, USA: IEEE Computer Society Press, 1994 : 124-134.
  • 4Grover L K. A fast quantum mechanical algorithm for database search. Proe of the 28th annual ACM Syrup on Theory of Computing. New York, USA: ACM Press, 1996:212-219.
  • 5Narayanan A, Moore M. Quantum inspired genetic algorithm. Proc of IEEE International Conference on Evolutionary Computation. New York, USA: IEEE Press, 1996:61-66.
  • 6Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 2002 ; 16 (6) : 580-593.
  • 7Han K H, Kim J H. Genetic quantum algorithm and its application to combinatorial optimization problem. Proc of the 2000 Congress on Evolutionary Computation. New York, USA: IEEE Press, 2000: 1354-1360.
  • 8Yang J A, Li B, Zhuang Z Q. Multi-universe parallel quantum genetic algorithm its application to blind-source separation. Proc of IEEE Int. Conf. on Neural Networks & Signal Processing. New York, USA: IEEE Press, 2003:393-398.
  • 9SHOR P W.Algorithms for quantum computation:discrete logarithms and factoring[C] //Proc of the 35th Annual Symposium on Foundations of Computer Science.Washingtom DC:IEEE Computer Society,1994:124-134.
  • 10GROVER L K.A fast quantum mechanical algorithm for database search[C] //Proc of the 28th Annual ACM Symposium on the Theory of Computing.New York:ACM Press,1996:212-219.

共引文献228

同被引文献123

引证文献13

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部