期刊文献+

一个新的分数阶微分方程边值问题正解的存在性结果 被引量:11

A NEW EXISTENCE RESULT OF POSITIVE SOLUTIONS FOR A ClASS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION BOUNDARY VALUE PROBLEMS
原文传递
导出
摘要 研究了下面分数阶微分方程边值问题正解的存在性和唯一性D_(0+)~αu(t)=f(t,u(t)),0<t<1,u(0)=u(1)=u′(0)=u′(1)=0,其中3<α≤4是实数,D_(0+)~α是标准的Riemann-Liouville微分,f:[0,1]×[0,∞)→[0,∞)连续。首先应用压缩映像原理得到解的唯一性,其次应用不动点指数得到正解的存在性,证明中借助了特征值理论。 In this paper, we consider the existence and uniqueness of positive solutions for a nonlinear fractional differential equation boundary-value problem D0^αu(t)=f(t,u(t)),0〈t〈1, u(0)=u(1)=u'(0)=u'(1)=0where 3 〈 α ≤ 4, and D0+α+ is the stanctara ruem^uu [0, ∞) → [0,∞) is continuous. Firstly, the uniqueness of positive solution is obtained by use of contraction map principle. Then, some existence results of positive solutions are obtained. The proofs are based upon the reduction of the problem considered to the equivalent Fredholm integral equation of second kind.
出处 《系统科学与数学》 CSCD 北大核心 2012年第5期580-590,共11页 Journal of Systems Science and Mathematical Sciences
基金 新疆普通高校重点培育学科基金(XJzDXK2011004)
关键词 分数阶微分方程 边值问题 正解 不动点指数 Fractional differential equation, boundary-value problem, positive solutionfixed-point index.
  • 相关文献

参考文献2

二级参考文献8

共引文献22

同被引文献93

  • 1钟文勇.分数阶微分方程多点边值问题的正解[J].吉首大学学报(自然科学版),2010,31(1):9-12. 被引量:9
  • 2李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报(中文版),2005,48(6):1089-1094. 被引量:66
  • 3吴秉会,魏连锁.压缩映像原理在递推数列极限中的应用[J].高师理科学刊,2007,27(2):19-21. 被引量:3
  • 4郭大钧.非线性泛函分析.济南:山东科学技术出版社,2004.
  • 5赵艳,陈欣.压缩映像原理的简单应用——Banach空间等价范数与Lipschitz条件[J].西安文理学院学报(自然科学版),2007,10(4):37-38. 被引量:3
  • 6A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B. V. , Amsterdam, The Netherlands, 2006.
  • 7Z. B, Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. 72, (2010) 916 -924.
  • 8Xiaojie Xu , Xiangli Fei,The positive properties of Green's function for three point boundaryvalue problems of nonlinear fractional differential equations and its applications, Commun Nonlinear Sci Numer Simulat 17 (2012)1555 -1565.
  • 9Xiaojie Xu, Multiple positive solutions to singular positone and semipositone boundary value problems of nonlin- ear fractional differential equations, Mathematics Subject Clssification, (2000) 34B15.
  • 10Xiangkui Zhao, Positive solutions for four - point boundary valueproblems , Commun Nonlinear Sci Number Simu- lat ( 2011 ), doi : 10.1016/j. cnsns. 2011.01. 002.

引证文献11

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部