摘要
设E为实直线上一康托型集, Eα= E + α={β+α:β∈E};-1≤α≤ 1.设 Gp={β∈E-E: dimH(Eα E)=dimB(Eα E)=pdimH E), 0< p< 1,此处E-E={x-y:x,y E}.在一定的条件下,集合Eα E与Gp的分形维数被确定.
Let E be a Cantor-type set on real line and let Ea = E+a = { } for . Let Go = { ; dimH(E E) = dimB(Ea E) = pdimH E}, 0 < p < 1, where E - E = {x - y: x,y E}. The fractal dimensions of Ea E and Gp are determined under some conditions.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第2期225-232,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金!19641006