期刊文献+

利用OH自由基发射光谱测量氧炔焰燃烧温度 被引量:2

Temperature determination of an oxyacetylene flame based on the OH radical emission spectrum
原文传递
导出
摘要 利用OH自由基A-X电子带系的发射光谱来测量氧炔焰的燃烧温度。以双原子自由基能级结构和分子光谱理论为基础,通过确定OH自由基不同振转能级的布居数及Einstein跃迁几率等参数,得到了任意转动温度、振动温度和展宽条件下的谱线强度分布。进行发射光谱实验,测量了氧炔焰中不同火焰高度的OH自由基的发射光谱。通过理论光谱和实验数据的对比分析发现,不同振动带系的谱支强度分别表征了粒子的转动温度和振动温度,并由此最终确定了氧炔焰不同火焰高度的燃烧温度分别为3 125K和3 380K。 The combustion temperature of an oxyacetylene flame was determined by measuring the optical emission spectrum of the OH radicals using molecular spectra theory and a spectral temperature determination method. Key parameters for the radiative transitional intensity were evaluated theoretically, including the radical population and the Einstein coefficient for the different vibrational and rotational energy levels. The rotational and vibrational temperatures independently affect the simulated spectrum and its assignment. Distinct measurements of the oxyacetylene flame temperature were obtained by measuring at different distances from the nozzle. The intensities of the theoretical and experimental spectral lines are compared to obtain the rotational and vibrational temperatures with rotational temperatures of 3 125 K to 3 380 K.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期980-983,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金项目(51176085)
关键词 温度测量 发射光谱 OH自由基 氧炔焰 temperature determination emission spectroscopy OH radical oxyacetylene flame
  • 相关文献

参考文献12

  • 1Herzberg G.分子光谱与分子结构I:双原子分子光谱[M].王鼎昌,译.北京:科学出版社,1983.
  • 2Maurizio D L, Alexei S, Kennedy L A, et al. OH and CH luminescence in opposed flow methane oxy-flames [J]. Combustion and Flame, 2007, 1,19:435-447.
  • 3彭志敏,丁艳军,杨乾锁,姜宗林.基于OH自由基A^2Σ^+→X^2Π_r电子带系发射光谱的温度测量技术[J].物理学报,2011,60(5):250-259. 被引量:7
  • 4Krabicka J, LU Gang. Visualisation and characterisation of flame radical emissions through intensified spectroscopic imaging [J]. Journal of Physic:; Conference Series, 2009, 178, 012041.
  • 5Zare R N. A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials [J]. Journal of Molecular Spectroscopy, 1973, 46:37 66.
  • 6Dieke G H, Crosswhite H M. The ultraviolet bands of OH fundamental data [J]. J Quant Spectrosc Radiat Transfer, 1972, 12: 627-633.
  • 7Jorge L, Crosley D R. Transition probabilities in the A X electronic system of OH [J]. Journal of Chemical Physics, 1998, 109(2): 439-448.
  • 8孙明,吴彦,张家良,李杰,王宁会,吴疆,商克峰.空气电晕放电中的OH自由基发射光谱[J].光谱学与光谱分析,2005,25(1):108-112. 被引量:12
  • 9Park C S, Newfield M E, Fletcher D G, et al. Spectroscopic Emission Measurements within the Blunt Body Shock Layer in an Arc-Jet Flow [R]// American Institute of Aeronautics and Astronautics (AIAA), USA, 1997, 97-0990.
  • 10Izarra C D. UV OH spectrum used as a molecular pyrometer [J]. J Phys D: Appl Phys, 2000, 33:1697 1704.

二级参考文献50

  • 1董丽芳,冉俊霞,尹增谦,毛志国.大气压氩气介质阻挡放电中的电子激发温度[J].光谱学与光谱分析,2005,25(8):1184-1186. 被引量:31
  • 2屠昕,陆胜勇,严建华,马增益,潘新潮,岑可法,CHERON Bruno.大气压直流氩等离子体光谱诊断研究[J].光谱学与光谱分析,2006,26(10):1785-1789. 被引量:35
  • 3Levin D A 1999 AIAA paper 3567 1.
  • 4Anokhin E M, Ivanova T Y, Koudriavtsev N N, Starikovskii A Y 2007 AIAA paper 814 1.
  • 5Hyun S Y, Chul P, Chang K S 2008 AIAA paper 1276 1.
  • 6Sharma S P, Gillespie W 1991 J. Thermophys Heat Transfer $ 257.
  • 7Djameel R, Michel D, Raymond B 1999 J. Thermophys Heat Transfer 13 219.
  • 8Jeong E, Jeung I S, Byme S O, Houwing A F 2008 J. Propul Power 24 1258.
  • 9Griffiths A D, Houwing A F P 2005 Appl. Opt. 44 6653.
  • 10Laux C O, Kruger C H, Zare R N 2003 Plasma Sources Sci. T. 12 125.

共引文献17

同被引文献31

  • 1刘发发,谷艳华,彭亚平,李华,郭英男.乙醇均质压燃燃烧的化学反应动力学模拟[J].吉林大学学报(工学版),2009,39(1):21-26. 被引量:3
  • 2王春林,周昊,李国能,凌忠钱,岑可法.基于遗传算法和支持向量机的低NO_x燃烧优化[J].中国电机工程学报,2007,27(11):40-44. 被引量:67
  • 3Zhou H, Cen K F, Fan J R. Multi-objective optimization of the coal combustion performance with artificial neural networks and generic algorithms [J]. International Journal of Energy Research (S0363-907X), 2005, 29(6): 499-510.
  • 4Zhou H, Cen K F, Fan J R. Modelling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks [J]. Energy (S0360-5442), 2004, 29: 167-183.
  • 5Li K, Thompson S, Wieringa P A, et al. Neural networks and genetic algorithms can support human supervisory control to reduce fossil fuel power plant emissions [J]. Cognition, Technology & Work (S1435-5558), 2003, 5: 107-126.
  • 6Ahamd A L, Azid I A, A. Yousof R, et al. Emission control in palm oil mills using artificial neural network and genetic algorithm [J]. Computers & Chemical Engineering (S0098-1354), 2004, 28: 2709-2715.
  • 7Shakil M, Elshafei M, Habib M A, et al. Soft sensor for NOx and 02 using dynamic neural networks[J]. Computers & Electrical Engineering (S0045-7905), 2009, 35: 578-586.
  • 8Krabicka J, Lu G~ Yan Y. Profiling and characterization of flame radicals by combining spectroscopic imaging and neural network techniques [J]. IEEE Trans. Instrumentation and Measurement (S0018-9456), 2011, 60(5): 1854-860.
  • 9Higgins B, Mcquay M Q, Lacas F, et al. Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames [J]. Fuel (S0016-2361), 2001, 80(1): 67-74.
  • 10Higgins B, Mcquay M Q, Lacas F, et al. An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed, fuel-lean methane/air flames [J]. Fuel (S0016-2361), 2001, 80(11): 1583-1591.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部