期刊文献+

具有无限时滞和扩散项的非自治竞争系统的正周期解(英文) 被引量:4

Positive Periodic Solutions of Nonautonomous Competitive Systems with Infinite Delay and Diffusion
原文传递
导出
摘要 研究了一类具有无限时滞和扩散项的非自治竞争系统,利用重合度的廷拓定理,得到了该系统正周期解存在的充分性条件. By using the continuation theorem of coincidence degree theory, the existence of positive periodic solutions for a kind of nonautonomous competitive system with infinite delay and diffusion is studied. The sufficient conditions are obtained for the existence of positive periodic solutions of the system.
出处 《生物数学学报》 CSCD 2012年第2期193-202,共10页 Journal of Biomathematics
基金 National Natural Science Foundation of China(10726062) Natural Science Foundation of Fujian Province of China(2010J01005) Science and Technology Development Foundation of Fuzhou University(2010-XQ-24)
关键词 周期解 无限时滞 扩散 重合度 Periodic solutions Infinite delay Diffusion Coincidence degree
  • 相关文献

参考文献2

二级参考文献33

  • 1程荣福,赵明.一类捕食者与被捕食者模型的持久性与稳定性[J].生物数学学报,2008,23(2):289-294. 被引量:18
  • 2程荣福,蔡淑云.一个稀疏效应下的Volterra系统的极限环[J].生物数学学报,2005,20(4):443-446. 被引量:19
  • 3陈兰荪,陈健.垂线性生物动力系统[M].北京:科学出版社,1993:54-90.
  • 4Wang wendi, Chert Lansun. A Predator-Prey System with Stage-Structure for Predator[J]. Computers & Mathematics with Application, 1997, 33(8): 83-91.
  • 5Wang wendi. Global dynamics of a population model with stage structure for predator[A]. Chen Lansun et al(Eds). Advanced topics in Biomathematics, Proceeding of the international conferenoe on mathematical biology[C]. Singapore: World Scientific Publishing Co. Pte. Ltd., 1997, 253-257.
  • 6Arditi R, Ginzburg L R. Coupling in predator-prey dynamics: ratio-dependence[J]. J Theoretical Biology, 1989, 139(4): 311-326.
  • 7Levin S A. Dispersion and population interaction[J]. The Amer Naturalist, 1974, 108(3): 207-228.
  • 8Takenchi Y. Conflict Between the need to forage and the need to avoid competition: persistence of two-apecies model[J]. Mathematical Biosciences, 1990, 99(2):181-194.
  • 9Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin: Springer-Verlag, 1977: 40-45.
  • 10Ahmad S. On the nonautonomous Volterra-Lotka competition equations[J]. Proc.Amer.Math.Soc., 1993, 117, 199 204.

共引文献9

同被引文献31

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部