期刊文献+

人体上呼吸道气流结构与气溶胶沉积数值模拟 被引量:3

Numerical Simulation for Airflow Structure and Aerosol Deposition in Human Upper Respiratory
下载PDF
导出
摘要 人体上呼吸道内气流运动会导致吸入气溶胶在其内不同部位的沉积,进而会引发各种呼吸道疾病。运用计算流体动力学(CFD)方法对人体上呼吸道内气流运动特性和气溶胶沉积进行了数值模拟,通过试验对数值模拟模型进行了验证。研究结果表明:气流通过咽部、气管和支气管分叉发生分离气流运动,气流在声门下游的气管和支气管内壁形成局部高速区。在下游支气管内壁区形成新的边界层,靠近支气管内壁速度较高,而速度最大值形成于支气管边界层的外缘。气管和支气管内的气流结构特点致使在气管和支气管内壁形成较高的剪应力分布,剪应力较高容易伤害到气管和支气管内壁粘膜。惯性碰撞对于微尺度气溶胶沉积而言是主要的沉积机制。而湍流扩散、二次气流运动和环流气流运动对气溶胶在人体呼吸道内沉积同样具有重要的影响。 The aerosol deposition caused by air movement inside human upper respiratory tract can lead to respiratory diseases. The CFD (Computational Fluid Dynamic) technology was used to investigate the air movement characteristic and aerosol deposition within the human upper respiratory tract. The simulation results were validated by the experimental results based on the aerosol deposition experiment. The results show that the phenomenon of airflow separation appears near the outer wall of the pharynx, the trachea and the divider. The high velocity zone is created near the inner wall of the trachea and the divider. A new boundary layer is generated at the inner wall of the downstream bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The airflow structure in the trachea and the bifurcation result in the high shearing strength acting on the inner wall of the trachea and bifurcation, finally may lead to the inner wall injury. Inertial impaction is the main mechanism of deposition for micro aerosols. Turbulent dispersion, secondary flows and recirculation flows also influence aerosol deposition in the upper respiratory tract.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第8期1582-1587,共6页 Journal of System Simulation
关键词 上呼吸道 气流结构 剪应力 气溶胶沉积 数值模拟 upper respiratory tract air structure shearing stress aerosol deposition numerical simulation
  • 相关文献

参考文献19

  • 1Zheng L, Kleinstreuer C, Zhang Z. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns [J]. Journal of aerosol science (S0021-8502), 2007, 38(6): 625-644.
  • 2Zhang Z, Kleinstreuer C. Species heat and mass transfer in a human upper airway model [J]. International Journal of Heat and Mass Transfer (S0017-9310), 2003, 46(25): 4755-4768.
  • 3Cheng KH, Chang YS, Yeh HC, et al. Swift, Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage [J]. ASME Journal of Biomechanical Engineering (S0148-0731), 1997, 119(4): 476-482.
  • 4Calay RK, Kurujareon Jutarat, Holdo Ame Erik. Numerical simulation of respiratory flow patterns within human lung [J]. Respiratory Physiology & Neurobiology (S1569-9048), 2002, 130(2): 201-221.
  • 5Comer JK, Kleinstreuer C, Zhang Z. Flow structures and particle deposition patterns in double-bifurcation airway models Part 1, Air flowfields [J]. Journal of Fluid Mechanics (S0022-1120), 2001a, 435(1): 25-54.
  • 6Comer JK, Kleinstreuer C, Kim CS. Flow structures and particle deposition patterns in double-bifurcation airway models Part 2, Aerosol transport and deposition [J]. Journal of Fluid Mechanics (S0022-1120), 2001b, 435(1): 55-80.
  • 7Schroter RC, Sudlow MF. Flow patterns in models of the human bronchial airways [J]. Respiratory Physiology (S1569-9048), 1969, 7(3): 341-355.
  • 8Slutsky A, Berdine G, Drasen .1. Steady flow in a model of human. central airways [J]. Journal of Applied Physiology ($8750-7857), 1980, 49(3): 417-423.
  • 9Snyder B, Olson DE. Flow development in a model airway bronchus [J]. Journal of Fluid Mechanics (S0022-1120), 1989, 207(2): 378-392.
  • 10Zhao Y, Lieber BB. Steady inspiratory flow in a model symmetric bifurcation [J]. ASME Journal of Biomechanical Engineering, (SO 148-0731 ) 1994, 116(4): 488.-496.

二级参考文献42

  • 1曾敏捷,胡桂林,郑峰,樊建人.电厂排放烟气中的小颗粒在呼吸道内运动沉积的数值模拟[J].能源工程,2005,25(3):36-41. 被引量:6
  • 2Calay RK, Kurujareon Jutarat, Holde Arne Erik. Numerical simulation of respiratory flow patterns within human lung. Respiratory Physiology & Neurobiology, 2002, 130(2): 201-221.
  • 3Jayaraju ST, Brouns M, Verbanck S, et al. Fluid flow and particle deposition analysis in a realistic extrathoracic airway model using unstrrctured grids. Aerosol Science, 2007, 38(5): 625-644.
  • 4Zhang Z, Kleinstreuer C, Kim CS. Micro-particle transport and deposition in a human oral airway model. Aerosol Science, 2002, 33(12): 1635-1652.
  • 5Zhang Z, Kleinstreuer C. Cycle micron-size particle inhalation and deposition in a triple bifurcation lung airway model. Aerosol Science, 2002, 33(2): 257-281.
  • 6Liu Y, So RMC, Zhang HC. Modeling the bifurcating flow in an asymmetric human lung airway. Journal of Biomechanics, 2003(7): 951-959.
  • 7Zheng L, Kleinstreuer C, Zhang Z. Particle deposition in the human tracheobronchial airways due to transient in- spiratory flow patterns. Aerosol Science, 2007, 38(6): 625-644.
  • 8Renotte Christine, Bouffioux Vincent, Wilquem FreHderic. Numerical 3D analysis of oscillatory flow in the time- varying laryngeal channel. Journal of Biomechanics, 2000, 33(12): 1637-1644.
  • 9Zhang Z, Kleinstreuer C. Species heat and mass transfer in a human upper airway model. International Journal of Heat and Mass Transfer, 2003, 46(25): 4755-4768.
  • 10Zhang Z, Kleinstreuer C, Donohue JF, et al. Comparison of micro- and nano-size particle depositions in a human upper airway model. Aerosol Science, 2005, 36(2): 211-233.

共引文献37

同被引文献34

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部