摘要
提出用遗传算法优化径向基函数(RBF)神经网络,使其更接近非线性映射和更快的学习收敛速度。然后用改进后的RBF神经网络预测混沌时间序列。实验结果表明,基于RBF网络的混沌时间序列具有很强的拟合能力、误差小、取得更好的效果。
This paper proposes a genetic algorithm with radial basis function neural network(RBF),making it closer to the nonlinear mapping and faster learning speed.Then the improved RBF neural network for predicting chaotic time series.The experimental results show that,chaotic time series based on RBF network has very strong capability of fitting,small error,to obtain a better effect.
出处
《科技通报》
北大核心
2012年第8期66-68,71,共4页
Bulletin of Science and Technology
基金
国家自然科学基金项目资助(09ZR1413000)
关键词
混沌序列
RBF神经网络
遗传算法
chaotic sequence
RBF neural network
genetic algorithm