期刊文献+

权值自适应调整Unscented粒子滤波及其在组合导航中的应用 被引量:12

Unscented particle filtering with adaptive adjusted weight and its application in integrated navigation
下载PDF
导出
摘要 针对粒子滤波存在的重要性密度函数难以选取和粒子退化问题,提出了一种新的权值自适应调整Unscented粒子滤波算法。该算法在Unscented粒子滤波的采样过程中吸收权值自适应调整的优点,考虑最新量测影响,通过欧氏距离和反映量测噪声统计特性的精度因子来自适应的调整粒子对应权值分布,增加有用粒子的权值,降低粒子退化程度,保持粒子多样性。同时Unscented变换提高了滤波精度,使该算法能更好地适用于非线性、非高斯系统模型的计算。将提出的算法应用于GPS/DR组合导航系统进行仿真验证,结果表明,提出的权值自适应调整Unscented粒子滤波算法得到的东向定位误差控制在±5.5 m附近,北向定位误差则在±5.2 m附近,滤波性能明显优于扩展卡尔曼滤波和Unscented粒子滤波,能提高GPS/DR组合导航系统解算精度。 Particle filtering causes degeneration and has difficulties in selecting the importance density function. Aiming at this problem, this paper proposes a weight adaptive adjustment unscented particle filtering algorithm, which adds the concept of weight adjustment to the sample process of unscented particle filtering. This algorithm can adaptively adjust the weight function according to the latest measurement, the Euclidean distance and the accuracy factor constructed from statistic performance of measurement information, thus increasing the efficient weights and prevent particle from degeneracy and maintain particle diversity. It also uses the unscented transformation to improve the accuracy of particle filtering, therefore it is more suitable for the filtering calculation of a nonlinear and non-Gaussian model. The proposed algorithm has been applied to GPS/DR integrated navigation system. Experiments and comparisons demonstrate that the east and north position error of weight adaptive adjustment unscented particle filtering are within + 5.5 m and + 5.2m respectively. This algorithm is better than the extended Kalman Filtering and unscented particle filtering algorithms in terms of accuracy, and also improves the calculation precision in GPS/DR integrated navigation system.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2012年第4期459-463,共5页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(60974146) 陕西省自然科学基金(NBYU0004)
关键词 Unscented粒子滤波 似然分布自适应调整 权值自适应调整 GPS/DR组合导航 umcemed particle filter likehood-adjusted weight adaptive adjustment GPS/DR integrated navigation
  • 相关文献

参考文献10

  • 1Johannes M. Polson N. Particle filtering[M]//Handbook of Financial Time Series, 2009:1015-1029.
  • 2Candy J V. Bootstrap particle filtering[J]. IEEE Signal Processing Magazine, 2007, 24(4): 73-85.
  • 3Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo[J]. IEEE Proceedings, 2007, 95( 5): 899-924.
  • 4Dini D H, Mandie D P, Julier S J. A widely linear complex unscented Kalman filter[J]. IEEE Signal Processing Letters, 2011, 18(11): 623-626.
  • 5Johansen A M, Doucet A. A Note on auxiliary particle filters[J]. Statistics and Probability Letters, 2008, 78(12): 1498-1504.
  • 6van der Merwe R. Sigma-Point Kalman filters for probabilistic inference in dynamic state-space models[D]. OGI School of Science & Engineering at Oregon Health & Science University, Portland, 2004: 79-82.
  • 7Torma P, C. Szepesv'ari C. On using likelihood-adjusted proposals in particle filtering: local importance sampling [C]// Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005: 58-63.
  • 8Doucet A, Johansen A M. A tutorial on particle filtering and smoothing: Fifteen years later[M]//Handbook of Nonlinear Filtering. Cambridee University Press. 2009.
  • 9高社生,李伟,桑春萌.基于四元数的SINS/SAR组合导航系统[J].中国惯性技术学报,2010,18(1):63-69. 被引量:8
  • 10焦雅林,高社生,薛丽.GPS/DR组合导航抗差自适应滤波算法[J].中国惯性技术学报,2010,18(3):307-311. 被引量:7

二级参考文献18

  • 1Bevington J E, Marttila C A. Precision aided inertial navigation using SAR and digital map data[C]//IEEE Position Location and Navigation Symposium. Las Vegas, NV, 20-23 Mar, 1990.
  • 2Gao She-sheng, Zhong Yong-min, Zhang Xueyuan, et al. Multi-sensor optimal data fusion for INS/GPS/SAR integrated navigation system[J]. Aerospace Science and Technology, 2009, 13(4-5): 232-237.
  • 3Shibata M. Error analysis of strapdown Inertial Navigation using quatemions[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(4): 379-381.
  • 4Kong X. INS algorithm using quatemion model for low cost IMU[J]. Robotics and Autonomous Systems, 2004, 46(4): 221-246.
  • 5Kong X, Nebot E, Durrant-Whyte H. Development of a non-linear psi-angle model for large misalignment errors and its application in INS alignment and calibration[C]// Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA, May 1999: 1430-1435.
  • 6Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc. of the IEEE Aerospace and Electronic Systems, 2004, 92(3): 401-422.
  • 7Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transaction on Signal Procession, March 2001, 49(3): 613-624.
  • 8Yang Yuan-xi, Gao Wei-guang. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80(4): 177-183.
  • 9Zhao Lin, Nie Qi, Gao Wei. A comparison of nonlinear filtering approaches for In-motion alignment of SINS[C]// International Conference Mechatronics and Automation. Harbin, China, August 5-8, 2007:1310-1315.
  • 10Gao Shesheng,Zhong Yongmin,Zhang Xueyuan,Bijan Shirinzadeh.Multi-sensor optimal data fusion for INS/GPS/SAR integrated navigation system[J].Aerospace Science and Technology,2009,13(4–5):232–237.

共引文献13

同被引文献76

引证文献12

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部