期刊文献+

非线性方程大范围内多根求解的一种方法

A Method for Solving More Roots of Nonlinear Equation in Large Scope
下载PDF
导出
摘要 在假设非线性方程f(x)=0在[a,b]内有多个单根的前提下,令F(x)=f2(x),应用凸函数的性质,使大范围区间[a,b]内的初值很快过渡到F(x)每个最小极值点的邻域内,即方程每个根的邻域内,然后采用求根迭代公式得f(x)=0在[a,b]内的每个根,并给出了相应的算法和算例进行验证.特别是作为特殊情形,在求方程的一个根时,该方法要比传统的方程求根法快得多. Under the premise of the assumption that the nonlinear equation f(x)=0 has more simple roots in ,making F(x)=f2(x),and applying the properties of convex function,the initial value in the large scope passed through to the neighbor of the each minimum extreme point of F(x) that is also the neighbor of the each root of the equation.Then each root of the nonlinear equation f(x)=0 was obtained using the iterative formula.The relevant algorithm and numerical example were given to verify in the end.This method is much faster than the traditional methods especially when the equation has one root.
出处 《甘肃科学学报》 2012年第3期4-6,共3页 Journal of Gansu Sciences
基金 甘肃省自然科学基金(096RJZE106) 甘肃省教育厅科研基金项目(0608-04)
关键词 非线性方程 多根 凸函数 极值点 迭代公式 nonlinear equation more roots convex function extreme point iterative formula
  • 相关文献

参考文献10

  • 1Yamamoto T, Historical Developments in Convergence Analy- sis for Newton's and Newton-like Method [J]. Journal of Computational and Applied Mathematics, 2000, 124 (1/2): 1-23.
  • 2Richard L. Burden, J. Douglas Faires. Numerical Analysis [M]. Hh. London: Higher Education Press, Thomson Learn- ing,Inc. ,2003.
  • 3李海合.迭代公式的一种加速收敛方法[J].甘肃科学学报,2011,23(4):85-89. 被引量:1
  • 4隋允康,张学生,陆贤英.一个比Newton法收敛快而稳的两点切线法[J].大连理工大学学报,1995,35(6):899-902. 被引量:5
  • 5Wu X Y,Wu H W. On a Class of Quadratic Convergence Iter- ation Formulae Without Derivatives[J]. Appl. Math. Com- pute, 2000,107 : 77-80.
  • 6Zheng Quan. A Steffensen-like Method and Its Variants[J]. Applied Mathematics and Computation, 2009,214 (1):10-16.
  • 7Vijesh V A,Subrahmanyam P V. A Newton-like Method and Its Application[J]. J Math Appl,2008,339(2):1 231-1 242.
  • 8Shen Weiping, Li Chong. Kantorovich-type Convergence Cri- terion for Inexact Newton Methods[J]. Applied Numerical Mathematics,2009,59(7):1 599-1 611.
  • 9徐长发,王敏敏,王宁昊.大范围求解非线性方程的加速迭代法[J].华中科技大学学报(自然科学版),2006,34(4):122-124. 被引量:3
  • 10华东师范大学数学系.数学分析(上册)[M].北京:高等教育出版社,1999.

二级参考文献16

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部