期刊文献+

基于CFAR级联的SAR图像舰船目标检测算法 被引量:8

An Algorithm of Ship Target Detection in SAR Images Based on Cascaded CFAR
下载PDF
导出
摘要 SAR图像舰船目标检测在军事监视和海洋环境监管等方面有着重要的意义。针对SAR图像的特点,提出了一种基于全局CFAR检测与局部CFAR检测级联的舰船目标检测算法。在全局CFAR检测中,通过海杂波特性拟合优选海杂波统计模型,以较高的虚警率筛选潜在的目标点;在局部CFAR检测中,以潜在目标点的连通区域为单位,通过检测窗口的选取、背景像素的确定和海杂波拟合等步骤以后,以较低的虚警率确定目标。最后,通过条件扩张算法和目标像素聚类完善船只细节。实验结果表明,文中算法在保证良好的检测性能的同时,具有检测效率高、舰船细节完整等优点,为舰船目标鉴别和信息提取提供了良好的保障,更加符合实际应用需求。 Ship target detection in SAR images has an important meaning on military surveillance and environmental supervision. According to the characteristics of SAR image, an algorithm of ship target detection in SAR images is proposed based on a two stage CFAR cascaded of global CFAR and local CFAR. In the global CFAR detection, sea clutter distribution is determined by sea clut- ter feature, and potential target pixels are sorted out at a high false alarm rate. In the local CFAR detection, each connected region of potential target pixels, after steps of the selection of detecting window, the decision of background pixels and the fitting of sea clutter, is confirmed at a low false alarm rate. Finally, ship details are improved by using conditional dilation and target pixel clus- tering. The experimental results show that the algorithm proposed in this paper can get higher detection efficiency and more com- plete ship details, with guaranteed good detection performance, and provides a good precondition for ship target discrimination and information extraction, more satisfies application demands of SAR images.
出处 《现代雷达》 CSCD 北大核心 2012年第9期50-54,58,共6页 Modern Radar
关键词 合成孔径雷达 海杂波 舰船目标 CFAR检测 SAR sea clutter ship target CFAR detection
  • 相关文献

参考文献10

  • 1Eldhuset K. An automatic ship and ship wake detection sys- tem for spaceborne SAR images in coastal region [ J ]. IEEE transactions on Geoscience and remote sensing, 1996,34 (4) :1010-1019.
  • 2Wakerman C C. Automatic ship detection of ships in radar- sat SAR imagery[J. Canadian Journal of Remote Sensing, 2001, 27(5) :372-378.
  • 3Vachon P W. Ship detection by the radarsat SAR: validation of detection model predictions [ J ]. Canadian Journal of Re- mote Sensing, 1997, 23 ( 1 ) :48-59.
  • 4Jiang Qingshan, Wang Shengrui, Ziou Djemel, et al. Auto- matic detection for ship targets in radarsat SAR images from coastal regions [ C ]/! Vision Interface "99, Trois-Tivieres. Canada: [s. n. ], 1999: 131-137.
  • 5Oliver C J, Quegan S. Understanding synthetic aperture ra- dar images[ M]. Boston: Artech House, 1998.
  • 6Henschel M D, Hoyt P A, Stockhausen J H, et al. Vessel detection with wide area remote sensing[ J]. Sea Techology, 1998, 39(9) :63-68.
  • 7Wang Ying, Chellappa R, Zheng Qinfen. Detection of point targets in high resolution synthetic aperture radar images[ C ]// 1994 IEEE International Conferenceon Acoustics, Speech, and Signal Processing. [S. 1. ]: IEEE Press, 1994:9-12.
  • 8艾加秋,齐向阳,禹卫东.改进的SAR图像双参数CFAR舰船检测算法[J].电子与信息学报,2009,31(12):2881-2885. 被引量:31
  • 9邢相薇,陈振林,邹焕新,等.一种基于两级CFAR的SAR图像舰船目标快速检测算法[J].信号处理,2009,25(8a):256-259.
  • 10Robertson N, Bird P, Brownsword C. Ship surveillance u- sing radarsat scansar images[ C]/! Alliance for Marine Re- mote Sensing (ARMS) Workshop on Ship Detection in Coastal Waters. NS Canada: [ s. n. ], 2000.

二级参考文献10

共引文献31

同被引文献46

引证文献8

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部