摘要
针对分块PCA算法对位移、旋转等几何变化比较敏感的缺点,提出一种基于分块PCA和奇异值分解相结合的人脸识别算法。该算法分别提取分块子图像的PCA特征和奇异值特征,在此基础上得到同时包含分块PCA和奇异值信息的距离测度,利用最小距离分类器进行分类识别。在ORL人脸库上的实验结果表明,该方法能够得到较高的识别率。
In order to solve the problem that modular PCA method is sensitive to translation, rotation and other geometric transform, a face recognition method based on modular PCA and singular value decomposition (SVD) is proposed. The PCA features of sub-image and SVD features are extracted respectively. The distance measure that fuses information of modular PCA and SVD is obtained. Minimum distance classifier is used to face recognition. Experimental results on ORL human face database show that the proposed method can obtain higher recognition rate.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第8期134-138,共5页
Journal of Chongqing University
基金
中央高校基本科研业务费资助项目(CDJXS10160007)