期刊文献+

时效温度对马氏体不锈钢激光焊接接头组织和性能的影响 被引量:3

Microstructure and Mechanical Properties of Stainless Maraging Steel Laser Weldments after Aging at Different Temperatures
下载PDF
导出
摘要 对Fe-Cr-Ni-Mo-Ti型(0Cr13Ni7MoTi)马氏体时效不锈钢激光焊接接头进行不同温度时效处理,时效温度选择在420~580℃范围内。激光焊接接头显微组织呈现出焊缝区、热影响区(Heat affected zone,HAZ)和基体三个不同区域。结果显示,在500℃以下时效处理,焊缝区、热影响区和基体主要由马氏体板条组成,在540℃及以上温度进行时效处理,三个区域均有逆转变奥氏体形成,使各区域硬度下降;焊接接头经过时效处理后各个区域的硬度变化规律不一致,时效后硬度低点出现于热影响区或基体;拉伸测试显示,不同时效态的断裂位置均与硬度低点区域一致,屈服强度在460℃时效时取得最大值,此温度时效处理的焊接接头具有最佳的拉伸性能;拉伸断口断裂机制发生由未时效的准解理断裂到时效态的韧性断裂转变。 The Fe-Cr-Ni-Mo-Ti(0Cr13Ni7MoTi)stainless maraging steel laser weldments have been investigated after post-weld ageing at different temperatures. The post-weld ageing treatments are performed in a temperature range of 420℃ to 580℃. Metallographic characterization of laser weldment reveals three zones, i.e. fusion zone, heat affected zone(HAZ) and unaffected parent material zone. Martensite is the predominant phase in the three zones when the ageing temperature is lower than 500 ℃, and large amount of reverted austenite occur in the three zones on ageing at above 540 ℃, this lead to hardness decrease in fusion zone and HAZ. After aging treatments, the hardness in three regions varies in different ways, low hardness appears in the HAZ or unaffected parent material zone. The tensile tests reveal that fracture location occurred in low hardness region and tensile properties are optimum after ageing at 460 ℃. Tensile fracture mechanism changes from brittle fracture to the ductile fracture under given aging treatments conditions.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第16期69-73,共5页 Journal of Mechanical Engineering
关键词 马氏体时效不锈钢 激光焊接 显微组织 力学性能 Maraging steel Laser beam welding Microstructure Mechanical properties
  • 引文网络
  • 相关文献

参考文献10

二级参考文献73

共引文献336

同被引文献33

  • 1关锐,高永军.AP1000反应堆主泵屏蔽套制造工艺浅析[J].中国核电,2008,1(1):49-53. 被引量:33
  • 2郭晓军. 激光焊接低合金高强钢T型搭接接头性能研究[D]. 上海交通大学, 2012. 14.
  • 3CHEN G Y, ZHANG M J, ZHAO Z, et al. Measurements of laser-induced plasma temperature field in deep penetration laser welding[J]. Optics & Laser Technology, 2013, 45(3): 551-557.
  • 4KATAYAMA S, KAWAH1TO Y, MIZUTANI M, Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects[J]. Physics Procedia, 2010, 5(2): 9-17.
  • 5HIDEKI H, YASUNOBU M, TADAYUKI O, et al. Minimization of heat-affected zone size in welded ultra-fine grained steel under cooling by liquid nitrogen during laser welding[J]. Materials Science and Engineering: A, 2006, 426(1-2): 21-30.
  • 6YILBAS B S, ARIF A F M, ABDUL ALEEM B J. Laser welding of low carbon steel and thermal stress analysis[J]. Optics&Laser Technology, 2010, 42(5): 760-768.
  • 7WU T Y, CHARLES U I. Prediction and experimental validation of penetration depth of butt welds in thin plates using superimposed laser sources[J]. NDT & E International, 2012, 50: 10-19.
  • 8WAN X L, WANG H H, CHENG L, et al. The formation mechanisms of interlocked microstructures in low-carbon high-strength steel weld metals[J]. Materials Characterization, 2012, 67: 41-51.
  • 9EROQLU M, AKSOY M, ORHAN N. Effect of coarse initial grain size on microstructure and mechanical properties of weld metal and HAZ of a low carbon steel[J]. Materials Science and Engineering: A, 1999, 269(1-2): 59-66.
  • 10ZHANG C G, LU P M. Residual stress and softening in welded high-strength low-alloy steel with a buffering layer[J]. Journal of Materials Processing Technology, 2013, 214(2): 229-237.

引证文献3

二级引证文献10

;
使用帮助 返回顶部