期刊文献+

引力搜索算法中粒子记忆性改进的研究 被引量:16

Analysis on improvement of particle memory in gravitational search algorithm
下载PDF
导出
摘要 针对引力搜索算法(GSA)对一些复杂问题的搜索精度不高的问题,特别是高维函数优化性能不佳、优化过程容易出现早熟的现象,因此考虑将粒子群优化(PSO)算法中关于局部最优解和全局最优解的概念引入引力搜索算法中,对引力搜索算法中粒子的记忆性进行改进,这样使得粒子的进化不仅受空间中其他粒子的影响,还受到自身记忆的约束,以此来提高算法的搜索能力。通过对选用的10个基准函数测试,证明了该方法的有效性。 As the gravitational search algorithm plays bad performance in search accuracy of the complex issues, especially the poor search quality of standard Gravitational Search Algorithm (GSA) in the high dimensional function optimization. It is easy to get into premature convergence in the optimization process. Therefore, the idea of the particle swarm optimization algorithm was introduced to gravitational search algorithm, which was used to improve the memory of particles. The particle evolution is not only influenced by other particles in the space, but also by its own memory constraint, which is used to improve the ability of exploitation. The test of the 10 benchmark functions confirms the validity of the method.
出处 《计算机应用》 CSCD 北大核心 2012年第10期2732-2735,共4页 journal of Computer Applications
基金 国家863计划项目(2009AA05Z203) 江苏高校优势学科建设工程资助项目(PAPD)
关键词 引力搜索算法 粒子群优化算法 记忆性 数值函数优化 群智能 Gravitational Search Algorithm (GSA) Particle Swarm Optimization (PS0) algorithm memory numerical function optimization swarm intelligence
  • 相关文献

参考文献4

二级参考文献38

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proceed-ings of the IEEE International Conference on Neural Networks. Perth, USA: IEEE Press, 1995 : 1942-1948.
  • 4Hsieh S T, Sun T Y, Liu C C, et al.Efficient population utiliza- tion strategy for particle swarm optimizer[J].IEEE Transactions on Systems, Man, and Cybernetics, 2009,39 (2) : 444-456.
  • 5Bergh F, Engelbrecht A P.Cooperative learning in neural net- works using particle swarm optimizers[J].South African Computer Journal, 2000,11 (6) : 84-90.
  • 6Shelokar P S, Siarry P, Jayaraman V K, et al.Particle swarm and ant colony algorithms hybridized for improved continuous opti- mization[J].Applied Mathematics and Computation, 2007,188 ( 1 ) : 129-142.
  • 7Xie Xiao-Feng,Zhang Wen-Jun,Yang Zhi-Lian.A dissipative par- ticle swarm optimization[C]//The IEEE Congress on Evolution- ary Computation, Hawaii, USA, 2002:1456-1461.
  • 8Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing hier- archical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8(3):240-255.
  • 9Liang J J,Qin A K,Suganthan P N,et al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
  • 10Chen X,Li Y M.A modified PSO structure resulting in high ex- ploration ability with convergence guaranteed[J].IEEE Transac- tions on Systems,Man,and Cybemetics,2007,37(5):1271-1289.

共引文献63

同被引文献188

引证文献16

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部