摘要
利用Banach空间及经典Orlicz空间几何理论,研究一般Orlicz序列空间的严格凸问题,得到了由一般Orlicz函数生成的赋p-Amemiya范数的Orlicz序列空间中端点的判据,并由该判据获得了由一般Orlicz函数生成的Orlicz序列空间关于p-Amemiya范数严格凸的充要条件.
By means of geometries of Banach spaces and Orlicz spaces method, the characterizations over rotundity of the Orlicz sequence spaces were discussed. For the Orlicz sequence spaces generated by an Orlicz function and equipped with p-Amemiya norm, the criteria of extreme points were presented. Based on the criteria, sufficient and necessary conditions were derived to make them rotund.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2012年第5期902-906,共5页
Journal of Jilin University:Science Edition
基金
波兰国家自然科学基金(批准号:201362236)
吉林省教育厅"十一五"科技项目(批准号:吉教科合字[2010]第214号)