期刊文献+

椭圆曲线上的二元门限序列的构造

Design of Pseudorandom Binary Threshold Sequences over Elliptic Curves
下载PDF
导出
摘要 鉴于椭圆曲线密码的高度安全性,利用椭圆曲线生成伪随机序列得到了高度的重视,但目前的研究主要集中在素域上的椭圆曲线。该文在定义于扩张域上的椭圆曲线上,定义取值在[0,1)区间上的伪随机数,并利用这类伪随机数给出了一类二元门限序列的构造。通过分析伪随机数的偏差,得到了二元门限序列的一致分布测度与l阶相关测度的上界,证明中应用了指数和以及偏差与上述两种测度的联系。此外,应用l阶相关测度,给出了二元门限序列的线性复杂度轮廓的下界。 Due to the high security level of elliptic curve cryptography, the constructions of pseudorandom sequences generated from elliptic curves have been paid more attention recently. But the study mainly is concentrated upon the application of elliptic curves over prime fields. This paper defines pseudorandom numbers in the interval (0,1) by using elliptic curves over extension fields and presents a construction of binary threshold sequences. A discrepancy bounds for the pseudorandom numbers is derived and used to study the pseudorandomness of the binary threshold sequences in terms of estimating upper bounds on the well-distribution measure and the correlation measure of order/, both introduced by Mauduit and Sarkozy. The proofs are based on bounds on exponential sums and earlier relations of Mauduit, Niederreiter and Sarkozy between discrepancy and both measures above. Moreover, a lower bound on the linear complexity profile of the binary threshold sequences is presented in terms of the correlation measure of order l.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第5期673-677,共5页 Journal of University of Electronic Science and Technology of China
基金 国家重点自然科学基金(61032003) 国家自然科学基金(61071100) 中央高校科研基本业务费(ZYGX2010J014) 福建省资助省属高校科技计划重点项目(JK2010047)
关键词 二元序列 特征和 相关测度 椭圆曲线 线性复杂度轮廓 流密码 binary sequences character sums correlation measure elliptic curves linear complexity profile stream ciphers
  • 相关文献

参考文献20

  • 1BEELEN P H T, DOUMEN J M. Pseudorandom sequences from elliptic curves. Finite Fields with Applications to Coding Theory, Cryptography and Related Areas[J]. Rerlin: Sprlnger-Verlag, 2002: 37-52.
  • 2GONG G; BERSON T, STINSON D. Elliptic curve pseudorandom sequence generator[C]//Proceedings of the 6th Annual Intemationl Workshop on Selected Areas of Cryptography. London, UK: Springer-Verlag, 1999: 34-48.
  • 3HESS F, SHPARLINSKI I E. On the linear complexity and multidimensional distribution of congruential generators over elliptic curves[J]. Designs, Codes and Cryptography, 2005, 35(1): 111-117.
  • 4MAHASSNI E El, SHPARLINSKI I E. On the uniformity of distribution of congruential generators over elliptic curves [C]//Proceeding of the International Conference on Sequences and their Applications (SETA'01). Bergen, London: Springer-Verlag, 2002: 257-264.
  • 5LANGE T, SHPARLINSKI I E. Certain exponential sums and random walks on elliptic curves[J]. Canad J Math, 2005,57(2): 338-350.
  • 6SHPARLINSKI I E. On the Naor-Reingold pseudo-random number function from elliptic curves[J]. Appl Algebra Engng Comm Comput, 2000, 11(1): 27-34.
  • 7SHPARLINSKI I E, SILVERMAN J H. On the lineu complexity of the Naor-Reingold pseudo-random functior from elliptic curves[J]. Designs, Codesand Cryptography.. 2001, 24(3): 279-289.
  • 8SHPARLINSKI I E. Pseudorandom number generators from elliptic curves[J]. Recent Trends in Cryptography, Contemporary Mathematics, American Mathematical Society, 2009, 477: 121-141.
  • 9MAUDUIT C, SARKOZY A. On finite pseudorandom binary sequences I: measures of pseudorandomness, the Legendre symbol[J]. AetaArithmetica, 1997, 82: 365-377.
  • 10CASSAIGNE J, MAUDUIT C, SARKOZY A. On finite pseudorandom binary sequences, VII: the measures of pseudorandomness[J]. Acta Arithmetica, 2002, 103: 97- 118.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部