期刊文献+

一个带有ATL过程的HTL V-I感染的时滞模型

One Discrete Time Delay Model of HTL V-I Infection and ATL Progression
原文传递
导出
摘要 本文提出并分析了两个关于人体T-细胞淋巴回归Ⅰ型病毒(HTL V-I)感染并带有坏死白血病细胞(ATL)进程的数学模型,一个常微分方程模型,一个离散时滞模型.首先对常微分方程模型进行了分析,运用相应的特征方程得到一个阈值Ro(CD4^+ T-细胞的基本再生数).当R_0≤1时,仅有未染病平衡态存在,并且给出了其稳定性;当R_0>1时,有一个染病稳定态存在,并且此时它是稳定的.然后,我们在常微分方程模型中引入了一个离散时滞,通过对时滞模型的超越特征方程的分析,导出了与常微分方程模型中同样的稳定性条件,即时滞模型平衡态的稳定性与时滞的具体值无关. In this paper,we propose and discuss two mathematical models of HTL V-I infection and ATL progression,one ODE model and one discrete time delay model.First,by analyzing the characteristic equation of the ODE model,it is shown that the dynamics of the ODE model is determined by the threshold of the parameters,that is,the basic reproductive number (of CD4~+ T-cell ) R_0.If the threshold value is less than one,i.e.R_01,only the disease-free equilibrium exist and it is stable.While the threshold value is greater than one,i.e.R_01,there is a unique endemic equilibrium,and it is stable.Then,we introduce one discrete time delay in the ODE model.By analyzing the transcendental characteristic equation of the delay model,we analytically derived stability conditions for the infected equilibrium in terms of the parameters and independent of the delay,i.e.identical to the ODE model.
出处 《生物数学学报》 CSCD 2012年第3期463-470,共8页 Journal of Biomathematics
关键词 HTL V-I感染 坏死的白血病T-细胞 特征方程 基本再生数 HTL V-I infection ATL T-cell Characteristic equation Basic reproductive number
  • 相关文献

参考文献11

  • 1Stilianakis N I,Seydel J.Modelling the T-cell dynamics and pathogenesis of HTL V-I infection[.I].Bulletin of Mathematical Biology,1999,61(5):935-947.
  • 2Stepan G.Retarded Dynamical Systems:Stability and Characteristic Punctions[M].UK:Longman,1989.
  • 3孙荷,陈国敏,杜文慧,欧阳小梅,庞月婵,何有明,张君芬,张永利,曾毅.新疆南疆地区嗜人T淋巴细胞病毒Ⅰ型血清流行病学调查[J].中华实验和临床病毒学杂志,1997,11(4):366-368. 被引量:14
  • 4Williams A E,Fang C T,Slamon D J.Seroprevalence and epidemiological correlates of HTL V-I infection in US blood donors[J].Science,1988,240(4852):643-646.
  • 5Yoshida M.Multiple viral strategies of HTL V-1 for dysregulation of cell growth control[J].Annual Review of Immunology,2001,19(1):475-496.
  • 6Richardson J H,Edwards A J,Cruickshank J K,et al.In vivo cellular tropism of human T cell leukemia virus type 1[J].Journal of Virology,1990,64(ll):5682-5687.
  • 7Richardson J H,Hollsberg P,Windhagen A,et al.Variable immortalizing potential and frequent virus latency in blood-derived T-cell clones infected with human T-cell leukemia virus typeⅠ[J].Blood,1997, 89(9):3303-3314.
  • 8Shinkan.Tokudome,Osamu Yokunaga,Yoshinori Shimamoto,et al.Incidence of adult T-cell leukemia/ lymphoma among human T-lymphotropic virus type I carriers in Saga,Japan[J].Cancer Research,1989, 49(1):226-228.
  • 9李永昆,杨莉,吴万勤.一类具变时滞的模糊BAM神经网络的平衡点的指数稳定性(英文)[J].生物数学学报,2010,25(1):13-23. 被引量:5
  • 10Dieudonne J.Foundations of Modern Analysis[M].New York:Academic Press,1960.

二级参考文献20

  • 1吕联煌,周瑶.福建省沿海地区人类T淋巴细胞白血病病毒小流行区的发现[J].中华血液学杂志,1989,10(5):225-227. 被引量:48
  • 2闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 3李大潜.非终身免疫型传染病动力学的偏微模型[J].生物数学学报,1986,(1):29-36.
  • 4马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2007.
  • 5Perelson A S, Nelson P W. Mathematical analysis of HIV-1 Dynamics in vivo[J]. SIAM Review, 1999, 41(1):3-44.
  • 6Levy.艾滋病病毒与艾滋病的发病机制[M].北京:科学出版社,2000.
  • 7Kaifa Wang, Wendi Wang, Haiyan Pang, et al. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica, 2007, D(226):197-208.
  • 8Martin Nomak A, Robert M. May, virus dynamics[M]. New York: OxfordUniversity Press, 2000.
  • 9Buric N, Mudrinic M, Vasovi N. Time delay in a basic model of the immune response[J]. Chaos, Solitons and Fractals, 2001, 12, 483-489.
  • 10Sandor Kovacs. Dynamics of an HIV/AIDS model-The effect of time delay[J]. Applied Mathematics and Computation, 2007, 188, 1597-1609.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部