期刊文献+

颗粒增强橡胶细观力学性能二维数值模拟 被引量:7

Two-dimensional numerical simulation for mechanical behavior of particle reinforced rubber matrix composites
下载PDF
导出
摘要 在细观层次上建立了具有随机分布形态的代表性体积单元,通过细观力学有限元方法对炭黑颗粒填充橡胶复合材料的宏观力学性能进行了研究。采用二维平面应变模型进行单轴压缩模拟仿真,通过施加周期边界条件保证了代表性体积单元变形场的协调性。重点研究讨论了颗粒的随机分布形态和粒径大小、刚度、体积分数对复合材料宏观应力-应变关系曲线和有效弹性模量的影响。结果表明:炭黑颗粒的填充显著提升了橡胶材料的刚度,在炭黑含量Vf=0.2513时,复合材料的有效弹性模量值高于橡胶初始模量值的2倍;复合材料的有效弹性模量随颗粒所占体积分数的增加而增大。 Representative volume element with random distribution pattern has been built and applied to study and analyze the macro mechanical properties of the carbon black filled rubber composites by the micromechanical finite element method.Numerical simulations for the uniaxial compression case have been made by two-dimensional plane strain model.The periodic boundary conditions are imposed on each representative volume element in order to ensure the compatibility of the deformation field.The dependence of the macroscopic stress-strain behavior and the effective elastic modulus of the composites,on particle distribution pattern,particle size,particle stiffness and particle volume fraction has been investigated and discussed.It is shown that the stiffness of the composite is increased considerably with the introduction of carbon black filler particles,and for the filler content of 0.2513,the effective elastic modulus of the composite is more than double the initial modulus of rubber.It is also shown that the effective elastic modulus of the composite is increased with the increase of the particle volume fraction.
作者 李庆 杨晓翔
机构地区 福州大学
出处 《应用力学学报》 CAS CSCD 北大核心 2012年第5期607-612,633,共6页 Chinese Journal of Applied Mechanics
关键词 橡胶复合材料 炭黑颗粒 细观力学模型 代表体积单元 随机分布 rubber composites,carbon black filler particle,micromechanical model,representative volume element,stochastic distribution
  • 相关文献

参考文献13

  • 1Bergstrom J S, Boyce M C. Mechanical behavior of particle filled elastomers[J]. Rubber Chemistry and Technology, 1999, 72.- 633-656.
  • 2Govindjee S, Simo J C. A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullin's effect[J]. Journal of the Mechanics and Physics of Solids, 1991, 39: 87-112.
  • 3Meinecke E A, TaRafM I. Effect of carbon black on the mechanical properties of elastomers[J]. Rubber Chemistry and Technology, 1988, 61: 534-547.
  • 4刘晓颖,杨晓翔.含斜裂纹剪切型橡胶减振垫的断裂分析[J].应用力学学报,2010,27(3):466-470. 被引量:2
  • 5Boyce M C, Arruda E M. Constitutive models of rubber elasticity: a review[J]. Rubber Chemistry and Technology, 2000, 73(3): 504-552.
  • 6Rivlin R S. Large elastic deformation of isotropic materials: I Fundamental concepts, II Some uniqueness theorems for pure homogeneous deformation[J]. Philosophical Transactions of the Royal Societyof London: SeriesA, 1948, 240: 459-508.
  • 7Gent A N. Engineering with rubber: how to design rubber components[M]. Lubeck. Hanser Gardner Publications, 2001.
  • 8Gilman lM, AskesH, Sluys L J. Representative volume: existence and size determination[J]. Engineedng Fracture Mechanics, 2007, 74: 2518-2534.
  • 9Smit R J M, Brekelmans W A M, Meijer H E H. Prediction of themechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling[J]. Computer Methods in Applied Mechanics andEngineering, 1998, 155: 181-192.
  • 10Segurado J, Llorca J. A numerical approximation to the elastic properties of sphere-reinforced composites[J]. Journal of the Mechanics andPhysics of Solids, 2002, 50: 2107-2121.

二级参考文献13

  • 1李晓芳,杨晓翔.橡胶纯剪试件变形与断裂的有限元分析[J].机械工程学报,2007,43(6):232-238. 被引量:8
  • 2Tschoegl N W.Constitutive equations for eiastomers[J].Appl Polymer Sci,1971,1:1959-1970.
  • 3Arruda E,Boyce M C.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J].Journal of the mechanics and physics of solids,1993,41(2):389-412.
  • 4James A G,Green A,Simpson G M.Strain energy functions of rubber:Ⅰ characterization of gum vulcanizates[J].Appl Polym Sci,1975,19:2033-2058.
  • 5James A G,Green A.SWain energy function of rubber.Ⅱ.The characterization of filled vulcanizates[J].Appl.Polymer Sci.,1975,19:2319-2330.
  • 6Gregory M J.The stress-strain behavior of filled rubbers at moderate strains[J].Plastics and Rubbers Materials and Applications,1979,4(4):184-188.
  • 7Morman Jr K N,Pan T Y.Application of finite-element analysis in the design of automotive eiastomeric components[J].Rubber chemistry and technology,1988,61(3):503-533.
  • 8Gent A N,Hwang Y C.Internal failures in model elastomeric composites[J].Journal of materials science,1990,25:4981-4986.
  • 9Li Xiaofang,Yang Xiaoxiang.Tearing energy for crack growth at the bonds of cylindrical rubber bushes subjected to axial shear[J].International Journal of Fatigue,2007,29:2230-2236.
  • 10Boyce M C,Arruda E M.Constitutive models of rubber elasticity:a review[J].Rubber chemistry and technology,2000,73(3):504-552.

共引文献1

同被引文献56

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部