摘要
蛋白质谱具有复杂、数据量大等特点,采用一般的统计学方法难以得到满意的疾病预测或分类结果。文从生物信息学的角度出发,综述了质谱数据挖掘的决策树模型、偏最小二乘法、神经网络模型和支持向量机几种主要方法,并对不同的方法给出了疾病诊断的实例说明,体现了质谱分析方法对疾病判别和预测的重要作用。
The protein spectrometry holds such characteristics of complex and large volumes of data that the general statistical methods can't satisfy the demand of disease prediction or classification. Several kinds of main methods of mass spectrometry data mining,such as decision tree analysis, partial least squares, artificial neural networks and support vector machines is overviewed in bioinformatics perspective. And examples of different methods used to diagnose disease are illustrated. These show an important role of mass spectrometry in identification and prediction of disease.
出处
《中国医疗器械杂志》
CAS
2012年第5期357-361,共5页
Chinese Journal of Medical Instrumentation
基金
国家自然科学基金(60971044)
国家科技支撑计划(2009BAI86B02)
关键词
生物信息学
数据预处理
决策树模型
偏最小二乘法
人工神经网络
支持向量机.
bioinformatics, data preprocessing, decision tree analysis, partial least squares, artificial neural networks, supportvector machines.