期刊文献+

基于有限能力的离散型制造企业生产排程模型 被引量:1

Production scheduling model based on the finite capacity of discrete manufacturers
下载PDF
导出
摘要 ERP中基于无限产能的倒序排产方法已不能适应现代企业的管理需求,针对ERP生产排程方法的局限性,以离散型制造企业为研究对象,采用规划建模的方法,构建了一种基于有限能力的生产排程模型,给出了求解方法,并通过实例验证了模型的可行性与有效性。该模型可在满足设备负荷的情况下自动给出优化的排产方案,无需人工反馈和调整,能显著提高生产排程的使用效果。 The reverse scheduling based on the infinite capacity of ERP has been unable to meet the needs of modern enterprise,for the limitations of the method of production scheduling in ERP and taking planning modeling approach.this paper built a production scheduling model based on the finite capacity of discrete manufacturers and gave a solving method,and verified the feasibility and effectiveness of the model through an example.Without human feedback and adjustment,the model can automatically gave optimized scheduling solution in the case of equipment load,and significantly improve the effect of production scheduling.
出处 《科技与管理》 2012年第5期99-102,共4页 Science-Technology and Management
基金 黑龙江普通高等学校青年学术骨干支持计划项目(1251G071) 齐齐哈尔大学青年教师科研启动支持计划项目(2011k-z10)
关键词 企业资源计划(ERP) 生产排程 模型 离散型制造企业 enterprise resource planning(ERP) production scheduling model discrete manufacturers
  • 相关文献

参考文献13

  • 1LI Wei,NAULT Barrie R,XUE Deyi,et al. An efficient heuristic for adaptive production scheduling and control in one-of-a-kind production [J]. Compute- and Operations Research. 2011,38 ( I ) : 267-276.
  • 2LIN Neng-Pai,KRAJEWSKI Lee. A model for master production scheduling in uncertain environments [J]. Decision Sciences, 1992,23(4):839-861.
  • 3PAN Ershun, LIAO Wenzhu, XI Lifeng.Single-machine-based production scheduling model integrated preventive maintenance planning[ J]. The International Journal of Advanced Manufacturing Technology, 2010,50(1-4) : 365-375.
  • 4WITKOWSKI T, ANTCHAK A, ANTCHAK P. The CSANN neural model modification for production Scheduling [J]. Journal of Automation and Information Science, 2004,36(10) : 44-51.
  • 5刘伟,王太勇,周明,饶俊.基于蚁群算法的工艺路线生成及优化[J].计算机集成制造系统,2010,16(7):1378-1382. 被引量:28
  • 6YAO Shiqing,JIANG Zhibin,LI Na,et al. A muhi-objective dynamic scheduling approach using multiple attribute decision making in semiconductor manufacturing [ J ]. International Journal of Production Economics, 2011,130 ( 1 ) : 125 - 133.
  • 71杨龙,梅军,刘茂辉.基于混合集合规划的大规模生产排程算法的研究[J].中国企业运筹学,2011(5):123-130.
  • 8CHO Sohyung,ERKOC Murat. Design of predictable production scheduling model using control theoretic approach[J ]. International Journal of Production Research. 2009,47( 11 ) : 2975-2993.
  • 9黄伟军,蔡力钢,胡于进,王学林,凌玲.基于遗传算法与有向图拓扑排序的工艺路线优化[J].计算机集成制造系统,2009,15(9):1770-1778. 被引量:25
  • 10苏春,王大侠.基于改进遗传算法的偏柔性作业车间调度[J].工业工程,2010,13(6):61-65. 被引量:6

二级参考文献51

  • 1乔兵,孙志峻,朱剑英.SOLVING FLEXIBLE JOB SHOP SCHEDULING PROBLEM BY GENETIC ALGORITHM[J].Transactions of Nanjing University of Aeronautics and Astronautics,2001,18(1):108-112. 被引量:13
  • 2王忠宾,王宁生,陈禹六.基于遗传算法的工艺路线优化决策[J].清华大学学报(自然科学版),2004,44(7):988-992. 被引量:38
  • 3卢冰原,陈华平,古春生,谷峰.基于模糊逻辑的偏柔性工作车间调度模型[J].中国管理科学,2004,12(6):52-55. 被引量:5
  • 4田颖,江平宇,周光辉,屈挺.基于蚁群算法的零件多工艺路线决策方法研究[J].计算机集成制造系统,2006,12(6):882-887. 被引量:31
  • 5HORVATH M, MARKUS A, NCZA J V. Process planning with genetic algorithms on results of knowledge-based reasoning[J].International Journal of Computer Integrated Manufacturing, 1996,9(2) : 145-166.
  • 6VANCZA J, MARKUS A. Genetic algorithms in process planning [J]. Computers in Industry, 1991,17(3) :181-194.
  • 7GUPTA S, NAU D. Optimal block's world solutions are N-P [R]. College Park, Md. , USA : University of Maryland, 1990.
  • 8王小平,曹立明.遗传算法--理论应用与软件实现[M].西安:西安交通大学出版社,2000.
  • 9ROCHA J,RAMOS C, VALE Z. Process planning using a genetic algorithm approach[C]//Proceedings of 1999 IEEE International Symposium on Assembly and Task Planning. Washington, D. C. , USA.. IEEE, 1999 :82-86.
  • 10LI L, FUH J Y H, ZHANG Y F, et al. Application of genetic algorithm to computer-aided process planning in distributed manufacturing environments[J]. Robotics and Computer-Integrated Manufacturing,2005,21(6) :568-578.

共引文献68

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部