期刊文献+

基于半方差函数的海杂波长相关特征分析

The Long-range Dependence Characteristic Analysis of Sea Clutter Based on the Semivariogram Function
下载PDF
导出
摘要 该文提出一种基于长相关特征的海上目标检测方法。利用半方差函数,建立海杂波在时间轴上的长相关特征曲线。根据所获得的曲线特征,分别提出半方差曲线拟合斜率和半方差曲线样本均值作为区分目标和海杂波的分形特征值。仿真试验结果表明,这两种特征参数都能用以有效区分目标和海杂波。 A target detection method based on the long-range dependence characteristic of sea clutter is proposed. By using the semivariogram function, the long-range dependence feature curve of sea clutter versus time is obtained. According to the curve, we suggest the slope and sample mean value of semivariogram curve as parameters to describe the fractal characteristics of the target and sea clutter. The analysis tests show that, with the two parameters, the target could be effectively distinguished from the sea clutter background.
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第10期2466-2469,共4页 Journal of Electronics & Information Technology
关键词 目标检测 海杂波 长相关 分形 半方差函数 Target detection Sea clutter Long-range dependence Fractal Semivariogram
  • 引文网络
  • 相关文献

参考文献19

  • 1陈小龙,刘宁波,宋杰,关键,何友.海杂波FRFT域分形特征判别及动目标检测方法[J].电子与信息学报,2011,33(4):823-830. 被引量:23
  • 2刘宁波,黄勇,关键,何友.实测海杂波频域分形特性分析[J].电子与信息学报,2012,34(4):929-935. 被引量:17
  • 3Samorodnitsky G. Long range dependence[J]. Foundations and Trends in Stochastic Systems, 2006, 1(3): 163-257.
  • 4Meyers R A, Eigen M, Lauterbur P, et al.. Encyclopedia of Complexity and Systems Science[M]. New York: SpringerScience+BuisinessMedia, LLC., 2009: 3754-3778.
  • 5Karagiannis T, Faloutsos M, and Riedi R H. Long-range dependence: now you see it, now you don't![C]. IEEE Global Telecommunications Conference, Taipei, 2002, 3: 2165-2169.
  • 6Sun Wei, Rachev S, and Fabozzi F J. Fractals or I.I.D.: evidence of long-range dependence and heavy tailedness from modeling German equity market returns[J]. Journal of Economics and Business, 2007, 59(6): 575-595.
  • 7Fernandez V. Alternative estimators of long-range dependence[J]. Studies in Nonlinear Dynamics Econometrics, 2011, 15(2): Artical 5.
  • 8Power G J and Turvey C G. Long-range dependence in the volatility of commodity futures prices: wavelet-based evidence[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(1): 79-90.
  • 9Abry P, Borgnat P, Ricciato F, et al.. Revisiting an old friend: on the observability of the relation between long range dependence and heavy tail[J]. Telecommunication Systems, 2010, 43(3/4): 147-165.
  • 10Gallant J C, Moore I D, Hutchinson M F, et al.. Estimating fractal dimension of profiles: a comparison of methods[J]. Mathematical Geology, 1994, 26(4): 455-481.

二级参考文献18

  • 1贺涛,周正欧.基于分形自仿射的混沌时间序列预测[J].物理学报,2007,56(2):693-700. 被引量:25
  • 2包永强,赵力,邹采荣.噪声环境下语音分形特征的提取和分析[J].电子与信息学报,2007,29(3):585-588. 被引量:4
  • 3Chen Yang-quan, Sun Rong-tao, and Zhou An-hong. An improved Hurst parameter estimator based on fractional Fourier transform[C]. Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Las Vegas, Nevada, USA, 2007: 1-11.
  • 4Drosopoulos A. Description of the OHGR Database[R}. Technology Note No. 94-14, Ottawa: Defence Research Establishment, 1994: 1-30.
  • 5Carretero-Moya 3, Gismero-Menoyo J, and Asensio-Ldpez A, et al.. Application of the Radon transform to detect smalltargets in sea clutter[J]. IET Radar, Sonar and Navigation, 2009, 3(2): 155-166.
  • 6Younsi A, Greco M, Gini F, and Zoubir A M. Performance of the adaptive generalized matched subspace constant false alarm rate detector in non-Gaussian noise: an experimental analysis[J]. IET Radar, Sonar and Navigation, 2009, 3(3): 195-202.
  • 7Hu J, Tung W W, and Gao J B. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 136-143.
  • 8Sun Hong-bo, Liu Guo-sui, and Gu Hong. Application of the fractional Fourier transform to moving target detection in airborne SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1416-1424.
  • 9Lv Xiaolei, Xing Meng-dao, and Zhang Shou-hong, et al.. Keystone transformation of the Wigner-Ville distribution for analysis of multicomponent LFM signals[J]. Signal Processing (Elsevier), 2009, 89(5): 791-806.
  • 10Ltltfiye Durak and Orhan Ar-kan. Short-time Fourier transform two fundamental properties and an optimal implementation[J]. IEEE Transactions on Signal Processing, 2003, 51(5): 1231-1242.

共引文献35

;
使用帮助 返回顶部