期刊文献+

二维非负矩阵分解在齿轮故障诊断中的应用 被引量:9

Application of Two-Dimensional Non-negative Factorization for Gear Fault Diagnosis
下载PDF
导出
摘要 针对齿轮故障信号时频分布识别问题,提出采用二维非负矩阵分解技术提取时频分布矩阵特征参数的方法。采用S变换技术将齿轮故障信号变换至时频域,为克服传统的一维非负矩阵分解对矩阵向量化带来的维数过高和结构信息损失问题,提出采用二维非负矩阵分解技术直接对信号时频分布矩阵提取特征参数。对齿轮5种状态下信号时频分布矩阵的特征提取和分类结果表明,二维非负矩阵分解技术无论在计算效率还是分类精度上都明显优于一维非负矩阵分解技术。 A new feature extraction scheme utilizing two-dimensional non-negative matrix factorization (2DNMF) for classification of time-frequency distributions of gear defect signals is presented in this work. The S transform is employed to generate the time-frequency distributions of gear defect signals. The newly developed 2DNMF, which can overcome the high dimension and structural information loss problem of traditional non-negative matrix factorization (1DNMF), is used to extract feature subsets for classifying the time-frequency matrices. The application to the practical gear fault diagnosis has revealed that the 2DNMF demonstrates higher computation efficiency and classification rates compared with the traditional 1DNMF.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2012年第5期836-840,868,共5页 Journal of Vibration,Measurement & Diagnosis
关键词 齿轮 故障诊断 特征提取 时频分布 二维非负矩阵分解 gear,fault diagnosis,feature extraction,time-frequency distribution,two-dimensional non-negative matrix factorization (2DNMF)
  • 相关文献

参考文献15

  • 1姜鸣,陈进,汪慰军.几种Cohen类时频分布的比较及应用[J].机械工程学报,2003,39(8):129-134. 被引量:24
  • 2林京,屈梁生.基于连续小波变换的信号检测技术与故障诊断[J].机械工程学报,2000,36(12):95-100. 被引量:71
  • 3Meltzer G, Ivanov Y Y. Fault detection in gear driveswith non-stationary rotational speed-part I: thetime-frequency approach[J]. Mechanical Systems andSignal Processing, 2003,17(5):1033-1047.
  • 4Oehlmann H,Brie D,Tomczak M, et al. A methodfor analysing gearbox faults using time-frequency rep-resentations [J]. Mechanical Systems and Signal Pro-cessing, 1997,11(4):529-545.
  • 5Lee D D,Seung H S. Learning the parts of objects bynon-negative matrix factorization [J]. Nature, 1999,401(6755):788-791.
  • 6Liu W,Zheng N. Non-negative matrix factorizationbased methods for object recognition C J ] ? PatternRecognition Letters, 2004,25(8) :893-897.
  • 7Zhang T,Fang B,Tang Y Y,et al. Topology pre-serving non-negative matrix factorization for facerecognition [J]. IEEE Transactions on Image Process-ing, 2008,17(4).-574-584.
  • 8Bucak S S,Gunsel B. Incremental subspace learningvia non-negative matrix factorization [J ] ? PatternRecognition, 2009,42(5) : 788-797.
  • 9Qing H W,Yun Z Y,Lei C, et al. Fault diagnosis for.diesel valve trains based on non-negative matrix fac-torization and neural network ensemble[J]. Mechani-cal Systems and Signal Processing,2009,23(5):1683-1695.
  • 10蔡蕾,朱永生.基于稀疏性非负矩阵分解和支持向量机的时频图像识别[J].自动化学报,2009,35(10):1272-1277. 被引量:16

二级参考文献37

共引文献115

同被引文献75

引证文献9

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部