期刊文献+

双向转角电磁铁输出扭矩特性仿真分析 被引量:3

Simulation analysis of output torque of two-way corner electromagnet
下载PDF
导出
摘要 基于电磁场有限元仿真,探讨了双向转角电磁铁的工作机理,分析了其输出扭矩特性。针对工业应用中,双向转角电磁铁在0°位置启动时,需要较大启动电流,且在0°~90°范围内提供的输出扭矩较小,为了获得较大输出扭矩,确定最佳工作区,采用电磁场有限元分析软件Maxwell 2D/3D,对不同安匝数的双向转角电磁铁进行瞬态仿真计算,得到电磁铁转子旋转180°过程中各角度的磁场分布以及输出扭矩,探讨了其实现双向旋转的工作机理。仿真结果表明:双向转角电磁铁的最佳工作区在40°~140°之间,输出扭矩会随着线圈安匝数的增多而增大。该仿真结果为双向转角电磁铁的工业应用提供了依据。 Based on the finite element simulation, the working mechanism for the two-way angle rotating electromagnet is discussed and its output torque characteristics are analyzed. For its application in industrial production, the two-way angle ro- tating electromagnet starts in the 0° position, which needs a large starting current. And its output torque is small within the range of 0°~90°. Maxwell 2D/3D, which is electromagnetic finite element analysis software, is employed for transient simu- lation for the two-way angle rotating electromagnet which has different ampere turns to obtain the larger output torque and de- termine the optimum working section. The magnetic field distribution in every angle and the output torque are obtained when the electromagnet rotor rotates 180°. And the hi-directional rotation mechanism of electromagnet is discussed. The results show that the optimum working section of the two-way corner electromagnet is between 40°and 140°, the output torque in-creases with the ampere turns of the coil increasing. The simulation results of the two-way angle rotating electromagnet pro- vides the basis for industrial application.
机构地区 南京理工大学
出处 《现代电子技术》 2012年第21期145-148,共4页 Modern Electronics Technique
关键词 双向转角电磁铁 有限元分析 最佳工作区 输出扭矩 安匝数 two-way angle rotating electromagnet finite element analysis optimum working section output torque am-pere turns
  • 引文网络
  • 相关文献

参考文献7

二级参考文献19

共引文献89

同被引文献22

  • 1唐玉发,张合,马少杰,徐国泰,查冰婷.制导用伸缩式电磁舵机输出特性优化[J].中国惯性技术学报,2013,21(5):692-696. 被引量:2
  • 2吴炎烜,范宁军.二维弹道修正引信总体方案和关键技术分析[J].战术导弹技术,2006(5):67-70. 被引量:16
  • 3崔剑,丁凡,李其朋.耐高压双向旋转比例电磁铁的静态力矩特性[J].浙江大学学报(工学版),2007,41(9):1578-1581. 被引量:15
  • 4Burke P,Pergolizzi T. XM1156 precision guidance kit (PGK) overview[A].2009.
  • 5Regazzoni D,Rizzi C,Nani R. A TRIZ-based approach to manage innovation and intellectual property[J].{H}INTERNATIONAL JOURNAL OF TECHNOLOGY MANAGEMENT,2011,(3-4):274-285.
  • 6Coelho D A. Matching TRIZ engineering parameters to human factors issues in manufacturing[J].WSEAS Transactions on Business and Economics,2009,(11):12-21.
  • 7Magnet-Schultz. Manufacture catalogue[M].Memmingen:Magnet-Schultz,2000.
  • 8Mazhoud I,Hadj-Hamou K,Bigeon J. The electromagnetic actuator design problem:an adapted interval global optimization algorithm[J].{H}IEEE Transactions on Magnetics,2012,(02):387-390.
  • 9Yang Sheng-ming. Electromagnetic actuator implementation and control for resonance vibration reduction in miniature magnetically levitated rotating machines[J].{H}IEEE Transactions on Industrial Electronics,2011,(02):611-617.
  • 10Burke P, Pergolizzi T. XMl156 precision guidance kit (PGK) overview[C]//The 53rd Annual Fuze Conference. 2009: 5-20.

引证文献3

二级引证文献6

相关主题

;
使用帮助 返回顶部