期刊文献+

预应力曲杆的Cosserat动力学模型 被引量:2

Dynamic modeling of pre-stressed curved Cosserat rods
下载PDF
导出
摘要 为了更方便地使用Cosserat杆模型对各种细长结构进行动力学建模,在该杆模型的框架下通过引入描述固连在杆横截面随其一起运动的初始变形、初始横截面转动以及横截面间的初始接触力和力矩等变量,建立了考虑预应力的细长曲杆的Cosserat动力学模型.在得到的模型的框架下,基于相应的物理假设,从数学演绎的角度推导了桥梁建设中广泛应用的具有初始垂度的拉索以及圆拱梁的动力学方程,结果与文献中采用其他方法得到的相应的动力学方程一致.由于Cosserat理论采用了精确的几何构形,这里导出的细长预应力曲杆动力学模型不仅保留了所有的几何非线性特征,而且具有很好的普适性,通过它可以容易地导出实际工程问题中细长结构的非线性动力学模型. To dynamically model slender structures conveniently by Cosserat rod theory, the dynamic equations for pre-stressed curved Cosserat rods are established within the framework of this rod theory by defining variables to describe their initial configurations, their pre-stresses and their initial deformations, which move along with their cross sections. Based on their corresponding specific assumptions, the dynamic equations for a cable with initial sag and a circular arch beam, which have wide applications in bridge structures, are explored within the framework of pre-stressed curved Cosserat rods, respectively. The results are in agreement with their corresponding equations obtained by other methods in references. Since the Cosserat theory is geometrically exact, the dynamic equations for pre-stressed curved Cosserat rods derived here are not only retaining all geometric nonlinear characteristics but also of universality, which can be effectively and efficiently exploited to nonlinear dynamically model for slender structures in practical engineering situations.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第11期1-6,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(10772056)
关键词 Cosserat杆模型 预应力曲杆 具有初始垂度的拉索 圆拱梁 Cosserat rod pre-stressed curved rod cable with initial sag circular arch beam
  • 相关文献

参考文献15

  • 1ARAFAT H N. Nonlinear response of cantilever beams [ D ]. Blacksburg, Virginia: Virginia Polytechnic Institute and State University, 1999: 17- 15.
  • 2LOVE A E H. A treatise on the mathematical theory of elasticity[ M ]. New York : Dover, 1944 : 399 - 400.
  • 3TIMOSHENKO S P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars [J]. Philosophical Magazine, 1921, 41(1): 744-747.
  • 4TIMOSHENKO S P. On the transverse vibrations of bars of uniform cross section [ J]. Philosophical Magazine, 1922, 43(1) : 125 -131.
  • 5ANTMAN S S. Nonlinear problems in elasticity [ M ]. New York : Springer-Verlag, 1995 : 13 - 359.
  • 6TUCKER R W, WANG C. Torsional vibration control and Cosserat dynamics of a drill-rig assembly[J]. Meccanica, 2003, 38(1): 143-159.
  • 7CAO Dengqing, LIU Dongsheng, WANG C H-T. Nonlin- ear dynamic modelling for MEMS components via the Cosserat rod dement approach[ J ]. Journal of Micromechanics and Microengineering, 2005, 15(6) : 1334 - 1343.
  • 8CAO Dengqing, TUCKER R W. Nonlinear dynamics of elastic rods using the Cosserat theory: modelling and simulation [ J ]. International Journal of Solids and Structures, 2008, 45 (2) : 460 - 477.
  • 9BURTON D A, TUCKER R W. Practical applications of simple Cosserat methods [ C ]// Mechanics of Gener- alized Continua. In: Advances in Mechanics and Mathematics. Berlin: Springer, 2010, 21:87-98.
  • 10刘延柱.On dynamics of elastic rod based on exact Cosserat model[J].Chinese Physics B,2009,18(1):1-8. 被引量:11

二级参考文献29

共引文献16

同被引文献31

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部