期刊文献+

障碍空间中不确定数据聚类算法 被引量:11

Clustering Algorithm of Uncertain Data in Obstacle Space
下载PDF
导出
摘要 近些年,由于数据采集的不精确和数据本身的不确定性,使不确定性在位置数据中普通存在。在障碍空间中,聚类不确定数据面临新的挑战。提出了障碍空间中聚类不确定数据的OBS-UK-means(obstacle uncertain K-means)算法,并提出了分别基于R树和Voronoi图的两种剪枝策略和最近距离区域的概念,大大减少了计算量。通过实验验证了OBS-UK-means算法的高效性和准确性,同时证明了剪枝策略在不损害聚类有效性的情况下,能够有效地提高聚类效率。 In recent years, uncertain data is generated widely in location data due to the inaccuracy of measurement instruction or the data attributes itself. The existence of obstacles in space brings the new challenges to spatial uncertain data clustering. This paper proposes OBS-UK-means (obstacle uncertain K-means) algorithm to cluster uncertain data in obstacle space, and also proposes two pruning strategies based on R-tree and Voronoi diagram and the shortest distance area concept, that greatly reduces the calculations. Finally, the experiment demonstrates that the efficiency and accuracy of the OBS-UK-means algorithm, and the pruning approach can improve the efficiency of the clustering algorithm, meanwhile, it doesn' t damage the cluster effectiveness.
出处 《计算机科学与探索》 CSCD 2012年第12期1087-1097,共11页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金 Nos. 61025007 60933001 61100024 61173029 中央高校基本科研业务费专项资金 No. N110404011~~
关键词 聚类 不确定数据 障碍空间 clustering uncertain data obstacle space
  • 相关文献

参考文献14

  • 1Aggarwal C C. On density based transforms for uncertain data mining[C]//Proceedings of the 23rd International Con-ference on Data Engineering (ICDE 2007), Istanbul, Apr 15-20, 2007. Washington, DC, USA: IEEE Computer Society, 2007: 866-875.
  • 2Cheng R, Xia Yuni, Prabhakar S, et al. Efficient indexing methods for probabilistic threshold queries over uncertain data[C]//Proceedings of the 30th International Conference on Very Large Data Bases (VLDB 2004), Toronto, Aug 31-Sep 3, 2004: 876-887.
  • 3Aggarwal C C, Jiawei Han, Wang Jianyong, et al. A framework for clustering evolving data streams[C]//Proceedings of the 29th International Conference on Very Large Data Bases (VLDB 2003), Sep 9-12, 2003: 81-92.
  • 4Aggarwal C C, Yu P S. A framework for clustering uncertain data streams[C]//Proceedings of the 24th International Con-ference on Data Engineering (ICDE 2008), Cancun, Apr 7-12, 2008. Washington, DC, USA: IEEE Computer Society, 2008: 150-159.
  • 5Hartigan J A, Wong M A. A k-means clustering algorithm[J]. Journal of the Royal Statistical Society, 1979, 28(1): 100-108.
  • 6Chau M, Cheng R, Kao B, et al. Uncertain data mining: an example in clustering location data[C]//Proceedings of the l Oth Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD '06). Berlin, Heidel- berg: Springer-Verlag, 2006: 199-204.
  • 7Kao B, Lee S D, Cheung D W, et al. Clustering uncertain data using Voronoi diagrams[C]//Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), Pisa, Italy, Dec 15-19, 2008. Washington, DC, USA: IEEE Computer Society, 2008: 333-342.
  • 8Hung E, Xu Lei, Szeto C-C. A heuristic on effective and efficient clustering on uncertain objects[C]//Proceedings of the 23rd Australasian Joint Conference on Artificial Intelli- gence, Australasia, Dec 7-10, 2010: 92-101.
  • 9Lee S D, Kao B, Cheng R. Reducing UK-means to K-means[C]// Proceeding of the 7th IEEE International Conference on Data Mining Workshops (ICDMW '07), Omaha, Oct 28-31, 2007. Washington, DC, USA: IEEE Computer Society, 2007: 483-488.
  • 10Ngai W K, Kao B, Chui C K, et al. Efficient clustering of uncertain data[C]//Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), Hong Kong, Dec 18-22, 2006. Washington, DC, USA: IEEE Computer Society, 2006: 436-445.

同被引文献87

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部